Question
Mathematics Question on Derivatives of Functions in Parametric Forms
The curve y(x) = ax 3 + bx 2 + cx + 5 touches the x -axis at the point P(-2, 0) and cuts the y -axis at the point Q , where y ′ is equal to 3. Then the local maximum value of y(x) is
A
427
B
429
C
437
D
29
Answer
427
Explanation
Solution
f(x) = y = ax3 + bx2 + cx + 5 …(i)
dxdy=3ax2+2bx+c……(ii)
Touches x -axis at P(–2, 0)
⇒Y|x=−2=0⇒−8a+4b−2c+5=0…(iii)
Touches x -axis at P(–2, 0) also implies
dxdy|x=−2=0⇒12a−4b+c=0…(iv)
y = f(x) cuts the y -axis at (0, 5)
Given,
dxdy|x=0=c=3…(v)
From (iii), (iv) and (v)
a=−21,b=−43,c=3
⇒f(x)=−2x2−43x2+3x+5
f′(x)=−23x2−43x+3
=−23(x+2)(x−1)
f ′(x) = 0 at x = –2 and x = 1
By first derivative test x = 1 in point of local maximum
Hence local maximum value of f(x) is f(1)