Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

The curve y(x) = ax 3 + bx 2 + cx + 5 touches the x -axis at the point P(-2, 0) and cuts the y -axis at the point Q , where y ′ is equal to 3. Then the local maximum value of y(x) is

A

274\frac{27}{4}

B

294\frac{29}{4}

C

374\frac{37}{4}

D

92\frac{9}{2}

Answer

274\frac{27}{4}

Explanation

Solution

f(x) = y = ax3 + bx2 + cx + 5 …(i)
dydx\frac{dy}{dx}=3ax2+2bx+c……(ii)
Touches x -axis at P(–2, 0)
⇒Y|x=−2=0⇒−8a+4b−2c+5=0…(iii)
Touches x -axis at P(–2, 0) also implies
dydx\frac{dy}{dx}|x=−2=0⇒12a−4b+c=0…(iv)
y = f(x) cuts the y -axis at (0, 5)
Given,
dydx\frac{dy}{dx}|x=0=c=3…(v)
From (iii), (iv) and (v)
a=−12\frac{1}{2},b=−34\frac{3}{4},c=3
⇒f(x)=−x22\frac{x^2}{2}34\frac{3}{4}x2+3x+5
f′(x)=−32\frac{3}{2}x2−34\frac{3}{4}x+3
=−32\frac{3}{2}(x+2)(x−1)
f ′(x) = 0 at x = –2 and x = 1
By first derivative test x = 1 in point of local maximum
Hence local maximum value of f(x) is f(1)