Solveeit Logo

Question

Mathematics Question on Tangents and Normals

The curve x2xy+y2=27x^2 - xy + y^2 =27 has tangents parallel to xaxisx-axis at

A

(-3, - 6) & (3, - 6)

B

(3, 6),& (-3, - 6)

C

(-3,6) & (-3, -6)

D

(3, -6) & (-3, 6)

Answer

(3, 6),& (-3, - 6)

Explanation

Solution

Given equation of curve is
x2xy+y2=27x^2 - xy + y^2 = 27 ... (i)
Taking derivative w.r.t. x'x' ori both sides
2xxdydxy+2ydydx=0\Rightarrow 2x -x \frac{dy}{dx} - y + 2y \frac{dy}{dx} = 0
dydx(2yx)=y2x\Rightarrow \:\:\: \frac{dy}{dx} \left(2y -x\right)=y -2x
dydx=y2x2yx\Rightarrow \frac{dy}{dx} = \frac{y-2x}{2y-x}
Since, curve has tangent parallel to x-axis
\therefore slope of tangent= 0
dydx=0y2x2yx=0\Rightarrow \frac{dy}{dx} = 0 \Rightarrow \:\:\:\: \frac{y-2x}{2y-x} = 0
y2x\Rightarrow y -2x .....(ii)
\
Now solving (i) and (ii) we get,
x22x2+4x2=27x^{2} -2x^{2}+4x^{2} =27
3x2=27x=±3\Rightarrow 3x^{2}=27 \Rightarrow x = \pm3
For x=3,y=6x = 3, y = 6 and x=3,y=6x = -3, y = -6
\therefore Points are (3, 6) and (-3, -6)