Solveeit Logo

Question

Mathematics Question on General and Particular Solutions of a Differential Equation

The curve satisfying the differential equation, (x2y2)dx+2xydy=0(x^2 - y^2) dx + 2xydy = 0 and passing through the point (1,1)(1, 1) is :

A

a circle of radius one.

B

a hyperbola.

C

an ellipse.

D

a circle of radius two.

Answer

a circle of radius one.

Explanation

Solution

Given (x2y2)dx+2xydy=0\left(x^{2}-y^{2}\right) d x+2 x y d y =0
dydx=(x2y2)2xy\Rightarrow \frac{d y}{d x} =-\frac{\left(x^{2}-y^{2}\right)}{2 x y}
Let y=vx,dydx=v+xdvdxy =v x, \frac{d y}{d x}=v+x \frac{d v}{d x}
2v1+v2dv=dxx+lnc\int \frac{2 v}{1+v^{2}} d v =-\int \frac{d x}{x}+\ln c
ln(1+y2)=lnx+lnc=ln(c/x)\ln \left(1+y^{2}\right) =-\ln x+\ln c=\ln (c / x)
1+v2=c/x1+v^{2} =c / x
x2+y2=exx^{2}+y^{2} =e x
It is passing through (1,1)(1,1) and c=2c=2. So, x2+y22x=0x^{2}+y^{2}-2 x=0.
Therefore, the curve is circle.