Solveeit Logo

Question

Question: The curve represented by \[\operatorname{Re} \left( {{z^2}} \right) = 4\] is A. a parabola B. an...

The curve represented by Re(z2)=4\operatorname{Re} \left( {{z^2}} \right) = 4 is
A. a parabola
B. an ellipse
C. a circle
D. a rectangular hyperbola

Explanation

Solution

Hint: First, we will take z=x+iyz = x + iy and then find the square of zz. Then we will calculate the real part of the obtained equation to find the curve represented by the given equation.

Complete step by step answer :
Given that the equation Re(z2)=4\operatorname{Re} \left( {{z^2}} \right) = 4.

Let us assume that z=x+iyz = x + iy.

Squaring this equation on both sides, we get

z2=(x+iy)2 z2=x2+i2y2+2ixy z2=x2y2+2xyi  \Rightarrow {z^2} = {\left( {x + iy} \right)^2} \\\ \Rightarrow {z^2} = {x^2} + {i^2}{y^2} + 2ixy \\\ \Rightarrow {z^2} = {x^2} - {y^2} + 2xyi \\\

Now we will find the real part of the above equation.

Re(z2)=Re(x2y2+2xyi) Re(z2)=x2y2  \Rightarrow \operatorname{Re} \left( {{z^2}} \right) = \operatorname{Re} \left( {{x^2} - {y^2} + 2xyi} \right) \\\ \Rightarrow \operatorname{Re} \left( {{z^2}} \right) = {x^2} - {y^2} \\\

Using the value Re(z2)=4\operatorname{Re} \left( {{z^2}} \right) = 4 in the above equation, we get

4=x2y2 x2y2=4 x2y24=1 x24y24=1  \Rightarrow 4 = {x^2} - {y^2} \\\ \Rightarrow {x^2} - {y^2} = 4 \\\ \Rightarrow \dfrac{{{x^2} - {y^2}}}{4} = 1 \\\ \Rightarrow \dfrac{{{x^2}}}{4} - \dfrac{{{y^2}}}{4} = 1 \\\

We know that the equation of hyperbola is x2a2y2b2=1\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1.

Thus, the above equation is an equation of a rectangular hyperbola.

Hence, the option D is correct.

Note: In this question, we will compare the solution with the general form of the equations for ellipse, circle, hyperbola and parabola to identify the curve. Also, we are supposed to write the values properly to avoid any miscalculation.