Solveeit Logo

Question

Physics Question on LCR Circuit

The current in an LRL-R circuit builds up to (3/4th )\left(3 / 4^{\text {th }}\right) of its steady state value in 44 seconds. The time constant of this circuit is

A

1ln2sec\frac{1}{\ln 2} \sec

B

2ln2sec\frac{2}{\ln 2} \sec

C

3ln2sec\frac{3}{\ln 2} \sec

D

4ln2sec\frac{4}{\ln 2} \sec

Answer

2ln2sec\frac{2}{\ln 2} \sec

Explanation

Solution

I=I0(1et/τ)I = I _{0}\left(1- e ^{-t / \tau}\right)
Where t=t=\rightarrow time constant
34I0=I0(Ietτ)\therefore \frac{3}{4} I _{0}= I _{0}\left( I - e ^{- t \tau}\right)
34=Ietτ\Rightarrow \frac{3}{4}= I - e ^{- t \tau}
etτ=14\Rightarrow e ^{- t \tau}=\frac{1}{4}
tτlne=ln14\Rightarrow \frac{- t }{\tau} \ln e =\ln \frac{1}{4}
4τ=2ln2\frac{-4}{\tau}=-2 \ln 2
τ=2ln2\Rightarrow \tau=\frac{2}{\ln 2}
τ=5×5890×10100.45\therefore \tau=\frac{5 \times 5890 \times 10^{10}}{0.45}
=6.544×104cm=6.544 \times 10^{-4} \,cm