Solveeit Logo

Question

Question: The current I in the circuit shown is _______....

The current I in the circuit shown is _______.

Answer

3.25 x 10^{-3} A

Explanation

Solution

The problem asks us to find the current 'I' in the given circuit. We can solve this using nodal analysis or the superposition theorem. Nodal analysis is generally more straightforward for circuits with multiple sources and interconnected nodes.

1. Define Nodes and Voltages: Let the bottom wire be the ground reference (0 V). Let the node connected to the positive terminal of the 5V voltage source be Node 1. From the diagram, the 5V source is connected between Node 1 and ground, so the potential at Node 1 is V1=5 VV_1 = 5 \text{ V}. The current 'I' is the total current flowing out of the 5V source into Node 1. Let the node between the two horizontal 2 kΩ resistors and the vertical 2 kΩ resistor be Node 2, with potential V2V_2. Let the node between the rightmost horizontal 2 kΩ resistor and the current source be Node 3, with potential V3V_3.

2. Apply Kirchhoff's Current Law (KCL) at Node 2 and Node 3:

KCL at Node 2 (V2V_2): The sum of currents leaving Node 2 must be zero. Current from Node 1 to Node 2: V2V12 kΩ\frac{V_2 - V_1}{2 \text{ k}\Omega} Current from Node 2 to Node 3: V2V32 kΩ\frac{V_2 - V_3}{2 \text{ k}\Omega} Current from Node 2 to Ground: V202 kΩ\frac{V_2 - 0}{2 \text{ k}\Omega}

So, we have: V2V12 kΩ+V2V32 kΩ+V22 kΩ=0\frac{V_2 - V_1}{2 \text{ k}\Omega} + \frac{V_2 - V_3}{2 \text{ k}\Omega} + \frac{V_2}{2 \text{ k}\Omega} = 0 Multiply by 2 kΩ2 \text{ k}\Omega: (V2V1)+(V2V3)+V2=0(V_2 - V_1) + (V_2 - V_3) + V_2 = 0 Substitute V1=5 VV_1 = 5 \text{ V}: (V25)+(V2V3)+V2=0(V_2 - 5) + (V_2 - V_3) + V_2 = 0 3V2V35=03V_2 - V_3 - 5 = 0 3V2V3=5(Equation 1)3V_2 - V_3 = 5 \quad \text{(Equation 1)}

KCL at Node 3 (V3V_3): The sum of currents leaving Node 3 must be zero. Current from Node 2 to Node 3: V3V22 kΩ\frac{V_3 - V_2}{2 \text{ k}\Omega} Current from the current source: The arrow indicates current flowing from ground to Node 3, so it's an incoming current of 103 A10^{-3} \text{ A}. If we consider currents leaving the node as positive, then the current due to the source leaving Node 3 is 103 A-10^{-3} \text{ A}.

So, we have: V3V22 kΩ103=0\frac{V_3 - V_2}{2 \text{ k}\Omega} - 10^{-3} = 0 V3V22000=103\frac{V_3 - V_2}{2000} = 10^{-3} V3V2=2000×103V_3 - V_2 = 2000 \times 10^{-3} V3V2=2(Equation 2)V_3 - V_2 = 2 \quad \text{(Equation 2)}

3. Solve the System of Equations: We have two linear equations with two unknowns (V2V_2 and V3V_3):

  1. 3V2V3=53V_2 - V_3 = 5
  2. V2+V3=2-V_2 + V_3 = 2

Add Equation 1 and Equation 2: (3V2V3)+(V2+V3)=5+2(3V_2 - V_3) + (-V_2 + V_3) = 5 + 2 2V2=72V_2 = 7 V2=72=3.5 VV_2 = \frac{7}{2} = 3.5 \text{ V}

Substitute V2=3.5 VV_2 = 3.5 \text{ V} into Equation 2: V33.5=2V_3 - 3.5 = 2 V3=2+3.5V_3 = 2 + 3.5 V3=5.5 VV_3 = 5.5 \text{ V}

4. Calculate the Current 'I': The current 'I' is the total current leaving the 5V source and entering Node 1. This current splits into two branches:

  • Current flowing from Node 1 to Node 2 through the 2 kΩ resistor: I12=V1V22 kΩI_{12} = \frac{V_1 - V_2}{2 \text{ k}\Omega}
  • Current flowing from Node 1 to Ground through the 2 kΩ resistor: I1G=V102 kΩI_{1G} = \frac{V_1 - 0}{2 \text{ k}\Omega}

Therefore, I=I12+I1GI = I_{12} + I_{1G} I=V1V22000+V12000I = \frac{V_1 - V_2}{2000} + \frac{V_1}{2000} Substitute V1=5 VV_1 = 5 \text{ V} and V2=3.5 VV_2 = 3.5 \text{ V}: I=53.52000+52000I = \frac{5 - 3.5}{2000} + \frac{5}{2000} I=1.52000+52000I = \frac{1.5}{2000} + \frac{5}{2000} I=1.5+52000I = \frac{1.5 + 5}{2000} I=6.52000I = \frac{6.5}{2000} I=6.52×103I = \frac{6.5}{2 \times 10^3} I=3.25×103 AI = 3.25 \times 10^{-3} \text{ A} Or, I=3.25 mAI = 3.25 \text{ mA}.