Solveeit Logo

Question

Physics Question on Current electricity

The current flowing through the 1Ω\Omega resistor is n10\frac{n}{10}A. The value of n is ________.
Resistance Diagram

Answer

Let the potentials at points A, B, and C be xx, yy, and 00, respectively.

Applying Kirchhoff’s Current Law (KCL) at node B:

y52+y02+yx+101=0\frac{y - 5}{2} + \frac{y - 0}{2} + \frac{y - x + 10}{1} = 0 4y2x+15=0(i)\Rightarrow 4y - 2x + 15 = 0 \quad \text{(i)}

Applying KCL at node A:

x54+x04+x10y1=0\frac{x - 5}{4} + \frac{x - 0}{4} + \frac{x - 10 - y}{1} = 0 6x4y45=0(ii)\Rightarrow 6x - 4y - 45 = 0 \quad \text{(ii)}

Solving equations (i) and (ii):

From (i): y=154x154y = \frac{15}{4}x - \frac{15}{4}

Substituting in (ii): x=152,y=0x = \frac{15}{2}, \, y = 0

The current through the 1Ω1 \, \Omega resistor is:

i=yx+101=07.5+101=2.5A.i = \frac{y - x + 10}{1} = \frac{0 - 7.5 + 10}{1} = 2.5 \, \text{A}.

Therefore: i=n10,n=25.i = \frac{n}{10}, \quad n = 25.

Final Answer: n=25n = 25.