Solveeit Logo

Question

Question: The cube root of \(A(x - d) - B(x - c) + C(x - c)(x - d) = (x - a)\) is....

The cube root of A(xd)B(xc)+C(xc)(xd)=(xa)A(x - d) - B(x - c) + C(x - c)(x - d) = (x - a) is.

A

x2x^{2}

B

C=1C = 1

C

x25x23x+2=x25(x1)(x2)=Ax1+Bx2+C\frac{x^{2} - 5}{x^{2} - 3x + 2} = \frac{x^{2} - 5}{(x - 1)(x - 2)} = \frac{A}{x - 1} + \frac{B}{x - 2} + C

D

\Rightarrow

Answer

\Rightarrow

Explanation

Solution

Let =logabcabc=1= \log_{abc}abc = 1

a=log2412=log12log24=2log2+log33log2+log3b=log3624=3log2+log32(log2+log3)a = \log_{24}12 = \frac{\log 12}{\log 24} = \frac{2\log 2 + \log 3}{3\log 2 + \log 3}b = \log_{36}24 = \frac{3\log 2 + \log 3}{2(\log 2 + \log 3)}

c=log4836=2(log2+log3)4log2+log3c = \log_{48}36 = \frac{2(\log 2 + \log 3)}{4\log 2 + \log 3}

\therefore

abc=2log2+log34log2+log3abc = \frac{2\log 2 + \log 3}{4\log 2 + \log 3}

1+abc=6log2+2log34log2+log3=2.3log2+log34log2+log3=2bc1 + abc = \frac{6\log 2 + 2\log 3}{4\log 2 + \log 3} = 2.\frac{3\log 2 + \log 3}{4\log 2 + \log 3} = 2bc

ax=ba^{x} = b \Rightarrow

So, xloga=logbx\log a = \log b

x=logbloga=logabx = \frac{\log b}{\log a} = \log_{a}b.