Solveeit Logo

Question

Question: The critical volume of the gas is \[{\text{0}}{\text{.072}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\...

The critical volume of the gas is 0.072lit.mol - 1{\text{0}}{\text{.072}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}. The radius of the molecule will be, in cm:
A.(34π×1023)13{\left( {\dfrac{3}{{4\pi }} \times {{10}^{ - 23}}} \right)^{\dfrac{1}{3}}}
B.(4π3×1023)13{\left( {\dfrac{{4\pi }}{3} \times {{10}^{ - 23}}} \right)^{\dfrac{1}{3}}}
C.(3π4×1023)13{\left( {\dfrac{{3\pi }}{4} \times {{10}^{ - 23}}} \right)^{\dfrac{1}{3}}}
D.(43π×1023)13{\left( {\dfrac{4}{{3\pi }} \times {{10}^{ - 23}}} \right)^{\dfrac{1}{3}}}

Explanation

Solution

The van der Waals gas equation is used for the real gases where two correction terms are used for intermolecular forces and the volume.
In the van der Waals equation the constants aa and bb are used as a correction term. The constant aais used as a correction to the intermolecular forces and the constant bb is used for the correction term to the volume.
The critical volume is three times the van der Waals constantbb.

Formula used: The relation between the critical volume and the van der Waals constant bb is given as follows:
Vc=3b{V_c} = 3b
The van der Waals constant b is given as follows:
b=163πr3NAb = \dfrac{{16}}{3}\pi {r^3}{N_A}

Complete step-by-step answer: The critical constant in terms of the van der Waals constant is as follows:

Vc=3b{V_c} = 3b……(i)
The value of van der Waals constant is given as follows:
b=163πr3NAb = \dfrac{{16}}{3}\pi {r^3}{N_A}…… (ii)
Here, bb is van der Waals constant, rr is the radius, and NA{N_A} is the Avogadro’s constant.
Here, substitutes the value of constant b in equation (i).
Vc=3×163πr3NA{V_c} = 3 \times \dfrac{{16}}{3}\pi {r^3}{N_A}
Here, the volume is litre per moles converted it into centimetres as follows:

1lit.mol - 1 = 1000cm.mol - 1{\text{1}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ = 1000}}\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}
0.072lit.mol - 1 = 0.072lit.mol - 1×1000cm.mol - 11lit.mol - 1{\text{0}}{\text{.072}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ = }}\dfrac{{{\text{0}}{\text{.072}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}{{ \times 1000}}\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}}}{{{\text{1}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}}}
0.072lit.mol - 1 = 72cm.mol - 1{\text{0}}{\text{.072}}\,{\text{lit}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ = 72}}\,\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}
Thus, the volume is 72cm.mol - 1{\text{72}}\,\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}.
Now, substitute 72cm.mol - 1{\text{72}}\,\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}} for Vc{V_c}, 6.023×1023mol - 1{\text{6}}{\text{.023}} \times {\text{1}}{{\text{0}}^{23}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}} for NA{N_A}, and then rearrange the equation for rr.
72cm.mol - 1=3×163πr3(6.023×1023mol - 1)\Rightarrow 72\,\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}} = 3 \times \dfrac{{16}}{3}\pi {r^3}\left( {6.023 \times {{10}^{23}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}} \right)
72cm.mol - 1 = 16πr3(6.023×1023mol - 1)\Rightarrow {\text{72}}\,\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}{\text{ = }}16{{\pi }}{{\text{r}}^{\text{3}}}\left( {{\text{6}}{\text{.023}} \times {\text{1}}{{\text{0}}^{23}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}} \right)
r3=116π×72cm.mol - 16.023×1023mol - 1\Rightarrow {r^3} = \dfrac{1}{{16\pi }} \times \dfrac{{{\text{72}}\,\,{\text{cm}}{\text{.mo}}{{\text{l}}^{{\text{ - 1}}}}}}{{{\text{6}}{\text{.023}} \times {\text{1}}{{\text{0}}^{23}}\,{\text{mo}}{{\text{l}}^{{\text{ - 1}}}}}}
Now, take the square root on both sides.
r=(34π×1023)13cm{\text{r}} = {\left( {\dfrac{3}{{{{4\pi }}}} \times {\text{1}}{{\text{0}}^{ - 23}}\,} \right)^{\dfrac{1}{3}}}\,{\text{cm}}
This is the radius of the molecule.

Therefore, option (A) is the correct answer.

Note: The volume occupied by the substance at the critical point is called critical volume and pressure of the gas at the same point is called critical pressure.
The radius of the molecule can be determined using the values of the critical volume of the gas and the Van der Waals constant bb.