Solveeit Logo

Question

Question: The critical speed of a satellite of mass \[500\text{ kg}\]is \[\text{20 }{\text{m}}/{\text{s}}\;\]....

The critical speed of a satellite of mass 500 kg500\text{ kg}is 20 m/s  \text{20 }{\text{m}}/{\text{s}}\;. What is the critical speed of a satellite of mass 1000 kg1000\text{ kg}moving in the same orbit?
(A). 10 ms1\text{10 m}{{\text{s}}^{-1}}
(B). 20 km hr1\text{20 km h}{{\text{r}}^{-1}}
(C). 72 ms1\text{72 m}{{\text{s}}^{-1}}
(D). 72km hr1\text{72km h}{{\text{r}}^{-1}}

Explanation

Solution

Critical velocity is the speed with which a satellite rotates in it’s orbit. Using the formula for critical velocity, Vc{{\text{V}}_{\text{c}}} solve for 500 kg500\text{ kg}mass satellite. Substitute the missing values and compare for 1000 kg1000\text{ kg}mass. Convert the units of speeds to check the options and get the right answer.

Formula used:
Vc = GMR{{\text{V}}_{\text{c}}}\text{ = }\sqrt{\dfrac{\text{GM}}{\text{R}}}

Complete step-by-step answer:
The critical speed is the horizontal speed given to a satellite so that it can be put into a stable circular orbit around the earth. It is also called orbital velocity. It is denoted by Vc{{\text{V}}_{\text{c}}} .
The formula for Vc{{\text{V}}_{\text{c}}}is-
Vc = GMR{{\text{V}}_{\text{c}}}\text{ = }\sqrt{\dfrac{\text{GM}}{\text{R}}} - (1)
Where G\text{G}= gravitational constant, 6.67×10116.67\times {{10}^{-11}} Nm2kg-2\text{N}{{\text{m}}^{\text{2}}}\text{k}{{\text{g}}^{\text{-2}}}
M\text{M}= mass of Earth, !!×!! 1024kg\text{6 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{24}}}\text{kg}
R\text{R} = radius of Earth, !!×!! 103km\text{6 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{3}}}\text{km}
It is given to us that Vc{{\text{V}}_{\text{c}}}= 20 ms1\text{20 m}{{\text{s}}^{-1}} for a satellite of mass 500 kg500\text{ kg}
From eq (1) we can see that Vc{{\text{V}}_{\text{c}}} does not depend on the mass of satellite, which means that it will remain constant irrespective of the mass of satellite. So, the value of Vc{{\text{V}}_{\text{c}}} for a satellite of mass 1000 kg1000\text{ kg} is 20 m/s  \text{20 }{\text{m}}/{\text{s}}\;.
Converting the units of Vc{{\text{V}}_{\text{c}}}from ms to kmhr\dfrac{\text{m}}{\text{s}}\text{ to }\dfrac{\text{km}}{\text{hr}}, we get,
20 m/s   = 201000km13600hr\text{20 }{\text{m}}/{\text{s}}\;\text{ = }\dfrac{\dfrac{20}{1000}\text{km}}{\dfrac{1}{3600}\text{hr}}
 20 ms1 = 72 km hr1\Rightarrow \text{ 20 m}{{\text{s}}^{-1}}\text{ = 72 km h}{{\text{r}}^{-1}}
Therefore, the correct option is (D). 72 km hr1\text{72 km h}{{\text{r}}^{-1}}.

So, the correct answer is “Option D”.

Additional Information: The centripetal force for the circular motion of satellites around the earth is provided by the gravitational force acting on it due to the Earth.

Note: The height at which satellite orbits above the surface of the earth is ignored as it is negligible in comparison to the radius of the Earth. Other formulas for Vc{{\text{V}}_{\text{c}}} are gR\sqrt{\text{gR}} (where g\text{g}is acceleration due to gravity), 2R!!π!! !!ρ!! 3\text{2R}\sqrt{\dfrac{\text{G }\\!\\!\pi\\!\\!\text{ }\\!\\!\rho\\!\\!\text{ }}{\text{3}}} (where  !!ρ!! \text{ }\\!\\!\rho\\!\\!\text{ } is the density of Earth). From the given formulas we can conclude that orbital velocity remains constant near the surface of earth.