Solveeit Logo

Question

Question: The cost of 4kg onion, 3kg wheat, and 2kg rice is Rs 60. The cost of 2kg onion, 4kg wheat, and 6kg r...

The cost of 4kg onion, 3kg wheat, and 2kg rice is Rs 60. The cost of 2kg onion, 4kg wheat, and 6kg rice is Rs 90. The cost of 6kg onion, 2kg wheat, and 3kg rice is Rs 70. Find the cost of each item per kg by matrix method.

Explanation

Solution

Hint: Write the equations. Then convert it in the form of a matrix X=D1BX={{D}^{-1}}B and find the inverse. And so place the inverse matrix and solve it you will get the price per unit of three commodities.

Now we can see in question.
Let the cost of each item per kg be xx,yy and zz.
So for first, we get the equation as,
4x+3y+2z=604x+3y+2z=60……….. (1)
So for a second, we get the equation as,
2x+4y+6z=902x+4y+6z=90………… (2)
So for the third, we get the equation as,
6x+2y+3z=706x+2y+3z=70 ………… (3)
So now equation (1), (2) and (3) can be written in matrix form that is,
DX=BDX=B
Where D=[432 246 623 ]D=\left[ \begin{matrix} 4 & 3 & 2 \\\ 2 & 4 & 6 \\\ 6 & 2 & 3 \\\ \end{matrix} \right],
X=[x y z ]X=\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]andB=[60 90 70 ]B=\left[ \begin{matrix} 60 \\\ 90 \\\ 70 \\\ \end{matrix} \right],
So now to find the cost of each item per kg, we have to find xx, yy and zz.
So we have to find a matrix XX.
So we have, DX=BDX=B
We know DD1=ID{{D}^{-1}}=I
where II is the identity matrix.
So X=D1BX={{D}^{-1}}B
So let us check ifD1{{D}^{-1}}it exists or not.
SoD=4(1212)3(636)+2(424)=500\left| D \right|=4(12-12)-3(6-36)+2(4-24)=50\ne 0
Therefore we can see above that DD is a nonsingular matrix and the inverse of DD exists.
So now we have to find an adjoint DD.
Let A=[aij]A=\left[ {{a}_{ij}} \right] be a square matrix of order nn . The adjoint of a matrix AA is the transpose of the cofactor matrix of AA . It is denoted by adj AA .
Given a square matrix A, the transpose of the matrix of the cofactor of A is called adjoint of A and is denoted by adj A. An adjoint matrix is also called an adjugate matrix.
In other words, we can say that matrix A is another matrix formed by replacing each element of the current matrix by its corresponding cofactor and then taking the transpose of the new matrix formed.

So now we have to find the inverse of DD.
D11=(1)1+146 23 =1212=0 D12=(1)1+226 63 =(636)=30 D13=(1)1+324 62 =424=20 D21=(1)2+132 23 =(94)=5 D22=(1)2+242 63 =1212=0 D23=(1)2+343 62 =(818)=10 D31=(1)3+132 46 =188=10 D32=(1)3+242 26 =(244)=20 D33=(1)3+343 24 =166=10  \begin{aligned} & {{D}_{11}}={{(-1)}^{1+1}}\left| \begin{matrix} 4 & 6 \\\ 2 & 3 \\\ \end{matrix} \right|=12-12=0 \\\ & {{D}_{12}}={{(-1)}^{1+2}}\left| \begin{matrix} 2 & 6 \\\ 6 & 3 \\\ \end{matrix} \right|=-(6-36)=30 \\\ & {{D}_{13}}={{(-1)}^{1+3}}\left| \begin{matrix} 2 & 4 \\\ 6 & 2 \\\ \end{matrix} \right|=4-24=-20 \\\ & {{D}_{21}}={{(-1)}^{2+1}}\left| \begin{matrix} 3 & 2 \\\ 2 & 3 \\\ \end{matrix} \right|=-(9-4)=-5 \\\ & {{D}_{22}}={{(-1)}^{2+2}}\left| \begin{matrix} 4 & 2 \\\ 6 & 3 \\\ \end{matrix} \right|=12-12=0 \\\ & {{D}_{23}}={{(-1)}^{2+3}}\left| \begin{matrix} 4 & 3 \\\ 6 & 2 \\\ \end{matrix} \right|=-(8-18)=10 \\\ & {{D}_{31}}={{(-1)}^{3+1}}\left| \begin{matrix} 3 & 2 \\\ 4 & 6 \\\ \end{matrix} \right|=18-8=10 \\\ & {{D}_{32}}={{(-1)}^{3+2}}\left| \begin{matrix} 4 & 2 \\\ 2 & 6 \\\ \end{matrix} \right|=-(24-4)=-20 \\\ & {{D}_{33}}={{(-1)}^{3+3}}\left| \begin{matrix} 4 & 3 \\\ 2 & 4 \\\ \end{matrix} \right|=16-6=10 \\\ & \\\ \end{aligned}
So the matrix of cofactors of DD =[03020 5010 102010 ]=\left[ \begin{matrix} 0 & 30 & -20 \\\ -5 & 0 & 10 \\\ 10 & -20 & 10 \\\ \end{matrix} \right].
So now adj DD becomes,
adj DD =[0510 30020 201010 ]=\left[ \begin{matrix} 0 & -5 & 10 \\\ 30 & 0 & -20 \\\ -20 & 10 & 10 \\\ \end{matrix} \right]
So we know D1=1DadjD{{D}^{-1}}=\dfrac{1}{\left| D \right|}adjD.
So now, D1=150[0510 30020 201010 ]{{D}^{-1}}=\dfrac{1}{50}\left[ \begin{matrix} 0 & -5 & 10 \\\ 30 & 0 & -20 \\\ -20 & 10 & 10 \\\ \end{matrix} \right].
So now we have got D1{{D}^{-1}}, so now we know X=D1BX={{D}^{-1}}B.
So now we get,

& \left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix} 0 & -5 & 10 \\\ 30 & 0 & -20 \\\ -20 & 10 & 10 \\\ \end{matrix} \right]\left[ \begin{matrix} 60 \\\ 90 \\\ 70 \\\ \end{matrix} \right] \\\ & \left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix} 0-5\times 90+10\times 70 \\\ 30\times 60+0-20\times 70 \\\ -20\times 60+10\times 90+10\times 70 \\\ \end{matrix} \right] \\\ & \\\ & \left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\dfrac{1}{50}\left[ \begin{matrix} 250 \\\ 400 \\\ 400 \\\ \end{matrix} \right] \\\ \end{aligned}$$ So simplifying the above equation by dividing each element inside the matrix by $50$, we get, $$\left[ \begin{matrix} x \\\ y \\\ z \\\ \end{matrix} \right]=\left[ \begin{matrix} 5 \\\ 8 \\\ 8 \\\ \end{matrix} \right]$$ So we have got the cost of each item per kg of $x$, $y$ and $z$ as $5$ rupees,$8$ rupees, and$8$ rupees respectively. Note: Read the question carefully. You should know how to convert a matrix into its inverse. You should be familiar with the inverse ${{D}^{-1}}=\dfrac{1}{\left| D \right|} adjD$. Most of the mistakes occur while finding adjoint. The more mistakes are seen in finding out the cofactor that is of the minus sign so take care of it.