Solveeit Logo

Question

Mathematics Question on Determinants

The cost of 4 kg onion,3 kg wheat and 2kg rice is Rs 60.The cost of 2 kg onion,4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer

Let the cost of onions, wheat, and rice per kg be Rs x, Rs y, and Rs z respectively.
Then, the given situation can be represented by a system of equations as:

4x+3y+2z=60
2x+4y+6z=90
6x+2y+3z=70

This system of equations can be written in the form of AX=B,where

A=[432\246\623]\begin{bmatrix}4&3&2\\\2&4&6\\\6&2&3\end{bmatrix}, X=[x\y\z]\begin{bmatrix}x\\\y\\\z\end{bmatrix} and B=[60\90\70]\begin{bmatrix}60\\\90\\\70\end{bmatrix}.

|A|=4(12-12)-3(6-36)+2(4-24)=0+90-40=50≠0
Now, A11=0, A12=30, A13=-20
A21=-5, A22=0, A23=10
A31=10, A32=-20, A33=10

∴ adj A=[0510\30020201010]\begin{bmatrix}0&-5&10\\\30&0&-20\\\\-20&10&10\end{bmatrix}

∴A-1=1A\frac{1}{\mid A \mid}adj A=\frac{1}{50}$$\begin{bmatrix}0&-5&10\\\30&0&-20\\\\-20&10&10\end{bmatrix}
Now, X=A-1 B

\Rightarrow X=\frac{1}{50}$$\begin{bmatrix}0&-5&10\\\30&0&-20\\\\-20&10&10\end{bmatrix}$$\begin{bmatrix}60\\\90\\\70\end{bmatrix}

\Rightarrow [x\y\z]\begin{bmatrix}x\\\y\\\z\end{bmatrix}=\frac{1}{50}$$\begin{bmatrix}0-450+700\\\1800+0-1400\\\\-1200+900+700\end{bmatrix}

=\frac{1}{50}$$\begin{bmatrix}250\\\400\\\400\end{bmatrix}

=[5\8\8]\begin{bmatrix}5\\\8\\\8\end{bmatrix}
∴x=5,y=8 and z=8

Hence,the cost of onions is Rs 5 per kg, the cost of wheat is Rs 8 per kg ,and the cost of rice is Rs 8 per kg.