Solveeit Logo

Question

Question: The correct value of the gas constant R is close to: A \[{\text{0}}{\text{.082 litre}} - {\text{a...

The correct value of the gas constant R is close to:
A 0.082 litreatm K{\text{0}}{\text{.082 litre}} - {\text{atm K}}
B 0.082 litreatm K1mol1{\text{0}}{\text{.082 litre}} - {\text{atm }}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
C 0.082 litreatm1 Kmol1{\text{0}}{\text{.082 litre}} - {\text{at}}{{\text{m}}^{ - 1}}{\text{ Kmo}}{{\text{l}}^{ - 1}}
D 0.082 litre1atm1 Kmol1{\text{0}}{\text{.082 litr}}{{\text{e}}^{ - 1}} - {\text{at}}{{\text{m}}^{ - 1}}{\text{ Kmo}}{{\text{l}}^{ - 1}}

Explanation

Solution

Write the expression for the ideal gas equation. Substitute units for all quantities (except the ideal gas constant R) in the ideal gas equation and calculate the unit of the ideal gas constant R.

Complete answer:
Write the ideal gas equation as shown below:
PV=nRTPV = nRT
Here, P is the pressure, V is the volume, n is the number of moles, R is the ideal gas constant and T is absolute temperature.
Rearrange the ideal gas equation to obtain an expression in terms of ideal gas constant.
R=P×Vn×TR = \dfrac{{P \times V}}{{n \times T}}
To obtain the unit of the ideal gas constant, substitute the unit atm for P, L for V, mol for n and K for T in the above expression.

R=P×Vn×T R=atm×Lmol×K R= litreatm K1mol1R = \dfrac{{P \times V}}{{n \times T}} \\\ \Rightarrow R = \dfrac{{{\text{atm}} \times {\text{L}}}}{{{\text{mol}} \times {\text{K}}}} \\\ \Rightarrow R = {\text{ litre}} - {\text{atm }}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}

As you know, the volume of one mole of an ideal gas at STP is 22.4 L22.4{\text{ L}}
Substitute one atmosphere for pressure, 22.4 L22.4{\text{ L}} for volume, one mole for number of moles and 273.15 K273.15{\text{ K}} for temperature in the rearranged ideal gas equation and calculate the value of R.

R=P×Vn×T R=1 atm×22.4 L1 mol×273.15 K R=0.082 litreatm K1mol1 R = \dfrac{{P \times V}}{{n \times T}} \\\ \Rightarrow R = \dfrac{{{\text{1 atm}} \times 22.4{\text{ L}}}}{{{\text{1 mol}} \times 273.15{\text{ K}}}} \\\ \Rightarrow R = 0.082{\text{ litre}} - {\text{atm }}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}

Thus, the correct value of the gas constant R is close to 0.082 litreatm K1mol1{\text{0}}{\text{.082 litre}} - {\text{atm }}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}

**Hence, the correct option is the option (B)

Note:**
In the unit for ideal gas constant R, the term litre atmosphere is in the numerator. This is because, in the expression for the ideal gas constant, the R=P×Vn×TR = \dfrac{{P \times V}}{{n \times T}}
pressure and volume are in the numerator. Similarly, the term moles kelvin is in the denominator. This is because, in the expression for the ideal gas constant R=P×Vn×TR = \dfrac{{P \times V}}{{n \times T}}, the number of moles and the absolute temperature are in the denominator.