Solveeit Logo

Question

Question: The correct representation for solubility product of \({\text{Sn}}{{\text{S}}_{\text{2}}}\) is A. ...

The correct representation for solubility product of SnS2{\text{Sn}}{{\text{S}}_{\text{2}}} is
A. [Sn4 + ][S22]2\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]{\left[ {{\text{S}}_2^{2 - }} \right]^2}
B. [Sn4 + ][S2]\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]\left[ {{{\text{S}}^{2 - }}} \right]
C[Sn4 + ][2S2]\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]\left[ {{\text{2}}{{\text{S}}^{2 - }}} \right]
D. [Sn4 + ][2S2]2\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]{\left[ {{\text{2}}{{\text{S}}^{2 - }}} \right]^2}

Explanation

Solution

To determine the answer of this question we should know what solubility product is and how to write it. Ksp{{\text{K}}_{{\text{sp}}}} represents the solubility product constant at equilibrium. When a solid substance dissolves into water it dissociates into ion. The product of solubilities of the ions with the number of each ion in power is known as the solubility product.

Complete solution:
The solubility product constant represents the product of concentrations of constituting ions of an ionic compound at equilibrium each raised number of ions as power.
An ionic compound dissociates into the water as follows:
AxByxA + Y + yBx{{\text{A}}_{\text{x}}}{{\text{B}}_{\text{y}}}\, \rightleftarrows \,\,{\text{x}}{{\text{A}}^{{\text{ + Y}}}}\,{\text{ + }}\,{\text{y}}{{\text{B}}^{ - x}}
Where,
AB{\text{AB}} is an ionic compound.
The general representation for the solubility product of an ionic compound is as follows:
Ksp = (xA + y)x(yAx)y{{\text{K}}_{{\text{sp}}}}\,{\text{ = }}\,{\left( {{\text{x}}{{\text{A}}^{{\text{ + y}}}}\,} \right)^{\text{x}}}\,{\left( {{\text{y}}{{\text{A}}^{ - x}}\,} \right)^{\text{y}}}
Ksp = xSx×ySy{{\text{K}}_{{\text{sp}}}}\,{\text{ = }}\,{\text{x}}{{\text{S}}^{\text{x}}}\,{\times }\,{\text{y}}{{\text{S}}^{\text{y}}}
Where,
Ksp{{\text{K}}_{{\text{sp}}}}is the solubility product constant.
S{\text{S}}is the solubility of each ion.
x{\text{x}} and y{\text{y}} represents the number of ions.
The compound SnS2{\text{Sn}}{{\text{S}}_2}dissociates into the water as follows:
SnS2Sn4 +  + 2S2{\text{Sn}}{{\text{S}}_2} \rightleftarrows \,\,{\text{S}}{{\text{n}}^{{\text{4 + }}}}{\text{ + }}\,\,2{{\text{S}}^{2 - }}
The solubility product for SnS2{\text{Sn}}{{\text{S}}_2}is represented as follows:
We will write the ion representation and we will add the coefficient of each ion as its power.
[Sn4 + ][2S2]2\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]{\left[ {{\text{2}}{{\text{S}}^{2 - }}} \right]^2}
So, the correct representation for solubility product of SnS2{\text{Sn}}{{\text{S}}_{\text{2}}} is [Sn4 + ][2S2]2\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]{\left[ {{\text{2}}{{\text{S}}^{2 - }}} \right]^2}.

Therefore, option (D) [Sn4 + ][2S2]2\left[ {{\text{S}}{{\text{n}}^{{\text{4 + }}}}} \right]{\left[ {{\text{2}}{{\text{S}}^{2 - }}} \right]^2}, is correct.

Note: Solubility tells the concentration of solid compounds dissolved in water. Concentration in the determination of solubility products is taken in terms of molarity. The formula of solubility product constant depends upon the number of ions produced by the ionic compounds in the water. Molar solubility represents the number of ions dissolved per liter of solution. As the number of ions increases the solubility increases.