Solveeit Logo

Question

Question: The correct formula of critical velocity \({{v}_{c}}\) is A. \({{v}_{c}}=\dfrac{k\eta d}{r}\) B...

The correct formula of critical velocity vc{{v}_{c}} is
A. vc=kηdr{{v}_{c}}=\dfrac{k\eta d}{r}
B. vc=kηdr{{v}_{c}}=\dfrac{k\eta }{dr}
C. vc=drkη{{v}_{c}}=\dfrac{dr}{k\eta }
D. vc=rηdk{{v}_{c}}=\dfrac{r\eta }{dk}

Explanation

Solution

Derive the formula of critical velocity using dimensional analysis.

Complete step by step solution:
Critical velocity depends on coefficient of viscosity η\eta, density of fluid dd and radius of tube rr . The dimension of each is
vc=LT1 η=ML1T1 d=ML3 r=L \begin{aligned} & {{v}_{c}}=L{{T}^{-}}^{1} \\\ & \eta =M{{L}^{-}}^{1}{{T}^{-}}^{1} \\\ & d=M{{L}^{-}}^{3} \\\ & r=L \\\ \end{aligned}
Using dimensional analysis with a,b and ca,b\text{ and }c as integers
vc=k(η)a(d)b(r)c LT1=(ML1T1)a(ML3)b(L)c \begin{aligned} & {{v}_{c}}=k{{(\eta )}^{a}}{{(d)}^{b}}{{(r)}^{c}} \\\ & L{{T}^{-}}^{1}={{(M{{L}^{-}}^{1}{{T}^{-}}^{1})}^{a}}{{(M{{L}^{-}}^{3})}^{b}}{{(L)}^{c}} \\\ \end{aligned}
Comparing the coefficients of M,L  and TM,L\;\text{and }T on both sides
a+b=0 a3b+c=1 a=1 \begin{aligned} & a+b=0 \\\ & -a-3b+c=1 \\\ & -a=-1 \\\ \end{aligned}
Solving for a,b and ca,b\text{ and }c
a=+1 b=1 c=1 \begin{aligned} & a=+1 \\\ & b=-1 \\\ & c=-1 \\\ \end{aligned}
Therefore
vc=kηdr{{v}_{c}}=\dfrac{k\eta }{dr}

The correct answer is option B.

Note: Critical velocity is the velocity at which a liquid transitions from subcritical flow to supercritical flow.