Solveeit Logo

Question

Question: The correct evaluation of \(\int _ { 0 } ^ { \pi / 2 } \left| \sin \left( x - \frac { \pi } { 4 } \r...

The correct evaluation of 0π/2sin(xπ4)dx\int _ { 0 } ^ { \pi / 2 } \left| \sin \left( x - \frac { \pi } { 4 } \right) \right| d x is

A

2+22 + \sqrt { 2 }

B

222 - \sqrt { 2 }

C

2+2- 2 + \sqrt { 2 }

D

0

Answer

222 - \sqrt { 2 }

Explanation

Solution

Let I=0π/2sin(xπ4)dxI = \int _ { 0 } ^ { \pi / 2 } \left| \sin \left( x - \frac { \pi } { 4 } \right) \right| d x

xπ4x - \frac { \pi } { 4 } is –ve when xπ4x \leq \frac { \pi } { 4 } and +ve when x>π4x > \frac { \pi } { 4 }

=0π/4sin(xπ4)dx+π/4π/2sin(xπ4)dx= - \int _ { 0 } ^ { \pi / 4 } \sin \left( x - \frac { \pi } { 4 } \right) d x + \int _ { \pi / 4 } ^ { \pi / 2 } \sin \left( x - \frac { \pi } { 4 } \right) d x =22= 2 - \sqrt { 2 } .