Solveeit Logo

Question

Question: The correct evaluation of \(\int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x\) is...

The correct evaluation of 0π/2sinxsin2x\int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x is

A

43\frac { 4 } { 3 }

B

13\frac { 1 } { 3 }

C

34\frac { 3 } { 4 }

D

23\frac { 2 } { 3 }

Answer

23\frac { 2 } { 3 }

Explanation

Solution

Let I=0π/2sinxsin2xdx=20π/2sin2xcosxdxI = \int _ { 0 } ^ { \pi / 2 } \sin x \sin 2 x d x = 2 \int _ { 0 } ^ { \pi / 2 } \sin ^ { 2 } x \cos x d x

Put t=sinxdt=cosxdxt = \sin x \Rightarrow d t = \cos x d x

Now, I=201t2dt=23[t3]01=23I = 2 \int _ { 0 } ^ { 1 } t ^ { 2 } d t = \frac { 2 } { 3 } \left[ t ^ { 3 } \right] _ { 0 } ^ { 1 } = \frac { 2 } { 3 }.