Solveeit Logo

Question

Question: The coordinates of the positions of particles of mass \(7,4\text{ and 10}gm\) are \((\text{1,5,} - ...

The coordinates of the positions of particles of mass 7,4 and 10gm7,4\text{ and 10}gm are (1,5,3),(2,5,7) (\text{1,5,} - 3),(\text{2,}5,7)\ and (3, 3, 1)cm(\text{3, 3, } - 1)cm respectively. The position of the centre of mass of the system would be

A

(157,8517,17) cm\left( - \frac{15}{7},\frac{85}{17},\frac{1}{7} \right)\text{ }cm

B

(157,8517,17) cm\left( \frac{15}{7}, - \frac{85}{17},\frac{1}{7} \right)\text{ }cm

C

(157,8521,17) cm\left( \frac{15}{7},\frac{85}{21}, - \frac{1}{7} \right)\text{ }cm

D

(157,8521,73) cm\left( \frac{15}{7},\frac{85}{21},\frac{7}{3} \right)\text{ }cm

Answer

(157,8521,17) cm\left( \frac{15}{7},\frac{85}{21}, - \frac{1}{7} \right)\text{ }cm

Explanation

Solution

m1=7gmm_{1} = 7gm, m2=4gmm_{2} = 4gm, m3=10gmm_{3} = 10gm

and r1=(i^+5j^3k^),r2=(2i+5j+7k),\overset{\rightarrow}{r_{1}} = (\widehat{i} + 5\widehat{j} - 3\widehat{k}),r_{2} = (2i + 5j + 7k), r3=(3i^+3j^k^)r_{3} = (3\widehat{i} + 3\widehat{j} - \widehat{k})

Position vector of center mass

r=7(i^+5j^3k^)+4(2i^+5j^+7k^)+10(3i^+3j^k^)7+4+10=(45i^+85j^3k^)21\overset{\rightarrow}{r} = \frac{7(\widehat{i} + 5\widehat{j} - 3\widehat{k}) + 4(2\widehat{i} + 5\widehat{j} + 7\widehat{k}) + 10(3\widehat{i} + 3\widehat{j} - \widehat{k})}{7 + 4 + 10} = \frac{(45\widehat{i} + 85\widehat{j} - 3\widehat{k})}{21}

r=157i^+8521j^17k^\overset{\rightarrow}{r} = \frac{15}{7}\widehat{i} + \frac{85}{21}\widehat{j} - \frac{1}{7}\widehat{k}. So coordinates of centre of mass [157,8521,17]\left\lbrack \frac{15}{7},\frac{85}{21},\frac{- 1}{7} \right\rbrack.