Solveeit Logo

Question

Question: The coordinates of the point A and B are \((ak,0)\) and \(\left( \frac{a}{k},0 \right),(k = \pm 1)\)...

The coordinates of the point A and B are (ak,0)(ak,0) and (ak,0),(k=±1)\left( \frac{a}{k},0 \right),(k = \pm 1). If a point P moves so that PA=kPB,PA = kPB, then the equation to the locus of P is.

A

k2(x2+y2)a2=0k^{2}(x^{2} + y^{2}) - a^{2} = 0

B

x2+y2k2a2=0x^{2} + y^{2} - k^{2}a^{2} = 0

C

x2+y2+a2=0x^{2} + y^{2} + a^{2} = 0

D

x2+y2a2=0x^{2} + y^{2} - a^{2} = 0

Answer

x2+y2a2=0x^{2} + y^{2} - a^{2} = 0

Explanation

Solution

(xak)2+y2=k2[(xak)2+y2]( x - a k ) ^ { 2 } + y ^ { 2 } = k ^ { 2 } \left[ \left( x - \frac { a } { k } \right) ^ { 2 } + y ^ { 2 } \right]

(1k2)(x2+y2)2akx+2akx+a2k2a2=0\Rightarrow \left( 1 - k ^ { 2 } \right) \left( x ^ { 2 } + y ^ { 2 } \right) - 2 a k x + 2 a k x + a ^ { 2 } k ^ { 2 } - a ^ { 2 } = 0

x2+y2a2=0\Rightarrow x ^ { 2 } + y ^ { 2 } - a ^ { 2 } = 0.