Solveeit Logo

Question

Question: The coordinates of the incentre of the triangle having sides \(3x - 4y = 0\), \(5x + 12y = 0\) and \...

The coordinates of the incentre of the triangle having sides 3x4y=03x - 4y = 0, 5x+12y=05x + 12y = 0 and y15=0y - 15 = 0 are
A) (1,8)\left( { - 1,8} \right)
B) (1,8)\left( {1, - 8} \right)
C) (2,6)\left( {2,6} \right)
D) None of these

Explanation

Solution

First we are to find the points of intersection of the three lines given in order to find the coordinates of the sides of the triangle. Then we can find the distance of the sides of the triangle. Further by using the formula of the incentre of a triangle, that is,
Incentre =(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c) = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)
Where, aa is the length of the side opposite to (x1,y1)\left( {{x_1},{y_1}} \right)
bb is the length of the side opposite to (x2,y2)\left( {{x_2},{y_2}} \right)
cc is the length of the side opposite to (x3,y3)\left( {{x_3},{y_3}} \right).

Complete step by step answer:
The given lines are,
3x4y=0(1)3x - 4y = 0 - - - \left( 1 \right)
5x+12y=0(2)5x + 12y = 0 - - - \left( 2 \right)
y15=0(3)y - 15 = 0 - - - \left( 3 \right)
So, in triangle ABCABC, the equations (1),(2),(3)\left( 1 \right),\left( 2 \right),\left( 3 \right) represents the sides AB,BC,CAAB,BC,CA, respectively.
Now, solving (1)\left( 1 \right) and (2)\left( 2 \right), we get the point BB.
So, (1)×3+(2)\left( 1 \right) \times 3 + \left( 2 \right) gives,
3(3x4y)+(5x+12y)=03\left( {3x - 4y} \right) + \left( {5x + 12y} \right) = 0
9x12y+5x+12y=0\Rightarrow 9x - 12y + 5x + 12y = 0
Now, simplifying, we get,
14x=0\Rightarrow 14x = 0
x=0\Rightarrow x = 0
Substituting this in (1)\left( 1 \right), we get,
3(0)4y=03\left( 0 \right) - 4y = 0
04y=0\Rightarrow 0 - 4y = 0
4y=0\Rightarrow 4y = 0
y=0\Rightarrow y = 0
Therefore, x=0,y=0x = 0,y = 0.
Hence, the point B(0,0)B\left( {0,0} \right).
Now, solving (2)\left( 2 \right) and (3)\left( 3 \right), we get the point CC.
From (3)\left( 3 \right), we get,
y=15y = 15
Substituting this value in (2)\left( 2 \right), we get,
5x+12(15)=05x + 12\left( {15} \right) = 0
5x+180=0\Rightarrow 5x + 180 = 0
Now, subtracting both sides by 180180, we get,
5x=180\Rightarrow 5x = - 180
Dividing both sides by 55, we get,
x=36\Rightarrow x = - 36
Therefore, we get, x=36,y=15x = - 36,y = 15.
Hence, the point C(36,15)C\left( { - 36,15} \right).
Now, solving (1)\left( 1 \right) and (3)\left( 3 \right), we get the point AA.
From (3)\left( 3 \right), we get,
y=15y = 15
Substituting this value in (1)\left( 1 \right), we get,
3x4(15)=03x - 4\left( {15} \right) = 0
3x60=0\Rightarrow 3x - 60 = 0
Now, adding 6060 to both sides, we get,
3x=60\Rightarrow 3x = 60
Now, dividing both sides by 33, we get,
x=20\Rightarrow x = 20
Therefore, we get, x=20,y=15x = 20,y = 15.
Hence, the point A(20,15)A\left( {20,15} \right).
Therefore the points of the triangle ABCABC are A(20,15)A\left( {20,15} \right), B(0,0)B\left( {0,0} \right), C(36,15)C\left( { - 36,15} \right).
Now, by using the distance formula we can find the distance between the points.
Therefore, the distance formula is d=(x2x1)2+(y2y1)2d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Now, using this formula, we get,
AB=c=(020)2+(015)2AB = c = \sqrt {{{\left( {0 - 20} \right)}^2} + {{\left( {0 - 15} \right)}^2}}
c=(20)2+(15)2\Rightarrow c = \sqrt {{{\left( { - 20} \right)}^2} + {{\left( { - 15} \right)}^2}}
c=400+225\Rightarrow c = \sqrt {400 + 225}
Now, simplifying the square root, we get,
AB=c=625=25\Rightarrow AB = c = \sqrt {625} = 25
And, BC=a=(360)2+(150)2BC = a = \sqrt {{{\left( { - 36 - 0} \right)}^2} + {{\left( {15 - 0} \right)}^2}}
a=(36)2+(15)2\Rightarrow a = \sqrt {{{\left( { - 36} \right)}^2} + {{\left( {15} \right)}^2}}
a=1296+225\Rightarrow a = \sqrt {1296 + 225}
Now, simplifying the square root, we get,
BC=a=1521=39\Rightarrow BC = a = \sqrt {1521} = 39
Again, AC=b=(3620)2+(1515)2AC = b = \sqrt {{{\left( { - 36 - 20} \right)}^2} + {{\left( {15 - 15} \right)}^2}}
b=(56)2+(0)2\Rightarrow b = \sqrt {{{\left( { - 56} \right)}^2} + {{\left( 0 \right)}^2}}
b=3136+0\Rightarrow b = \sqrt {3136 + 0}
Now, simplifying the square root, we get,
AC=b=3136=56\Rightarrow AC = b = \sqrt {3136} = 56
Therefore, AB=c=25,BC=a=39,AC=b=56AB = c = 25,BC = a = 39,AC = b = 56.
And, the points are, A(x1,y1)=(20,15)A\left( {{x_1},{y_1}} \right) = \left( {20,15} \right), B(x2,y2)=(0,0)B\left( {{x_2},{y_2}} \right) = \left( {0,0} \right), C(x3,y3)=(36,15)C\left( {{x_3},{y_3}} \right) = \left( { - 36,15} \right).
Now, using the formula of the incentre of a triangle, we get,
Incentre =(ax1+bx2+cx3a+b+c,ay1+by2+cy3a+b+c) = \left( {\dfrac{{a{x_1} + b{x_2} + c{x_3}}}{{a + b + c}},\dfrac{{a{y_1} + b{y_2} + c{y_3}}}{{a + b + c}}} \right)
Now, substituting the values, we get,
Incentre =(39(20)+56(0)+25(36)39+56+25,39(15)+56(0)+25(15)39+56+25) = \left( {\dfrac{{39\left( {20} \right) + 56\left( 0 \right) + 25\left( { - 36} \right)}}{{39 + 56 + 25}},\dfrac{{39\left( {15} \right) + 56\left( 0 \right) + 25\left( {15} \right)}}{{39 + 56 + 25}}} \right)
Now, simplifying, we get,
=(780+0900120,585+0+375120)= \left( {\dfrac{{780 + 0 - 900}}{{120}},\dfrac{{585 + 0 + 375}}{{120}}} \right)
=(120120,960120)= \left( {\dfrac{{ - 120}}{{120}},\dfrac{{960}}{{120}}} \right)
Now, diving the terms, we get,
Incentre =(1,8) = \left( { - 1,8} \right)
Therefore, the coordinates of the incentre of the triangle are (1,8)\left( { - 1,8} \right), the correct option is (A).

Note:
The incentre of a triangle is the point inside the triangle where the angle bisectors of the three angles meet inside the triangle. Together with the centroid, circumcentre and orthocentre, it is one of the four triangle centres known to the ancient Greeks. Care should be taken while carrying out the calculations so as to be sure of the final answer.