Solveeit Logo

Question

Question: The coordinates of the foot of perpendicular drawn from the point \(A\left( {1,8,4} \right)\) to the...

The coordinates of the foot of perpendicular drawn from the point A(1,8,4)A\left( {1,8,4} \right) to the line joining the points B(0,1,3)B\left( {0, - 1,3} \right) and C(2,3,1)C\left( {2, - 3, - 1} \right)
A.(53,23,193)\left( {\dfrac{{ - 5}}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right)
B.(53,13,163)\left( {\dfrac{5}{3},\dfrac{1}{3},\dfrac{{16}}{3}} \right)
C.(23,193,163)\left( {\dfrac{2}{3},\dfrac{{19}}{3},\dfrac{{16}}{3}} \right)
D.(1,2,3)\left( {1,2,3} \right)

Explanation

Solution

First, find the equation of the lines joining the points, B(0,1,3)B\left( {0, - 1,3} \right) and C(2,3,1)C\left( {2, - 3, - 1} \right). Then write the direction ratios of the line BCBC. Now, find the coordinates of any general point on line BCBC using a variable say, λ\lambda . Write the direction ratios of the perpendicular drawn from A(1,8,4)A\left( {1,8,4} \right) to line BCBC. Take the dot product of direction ratios equal to 0 to find the value of λ\lambda for the foot of perpendicular. Substitute the value of λ\lambda in the general point of BCBC to find the coordinates of the foot of perpendicular.

Complete step-by-step answer:
Let DD be the foot of perpendicular from the point A(1,8,4)A\left( {1,8,4} \right) to the line joining the points B(0,1,3)B\left( {0, - 1,3} \right) and C(2,3,1)C\left( {2, - 3, - 1} \right)
First of all, draw the diagram corresponding to the given question.

We can find the equation of line from two points. If (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) are two points on the line, then the equation of line is xx1x2x1=yy1y2y1=zz1z2z1\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}.
Then equation of line BCBC is,
x020=y(1)3(1)=z3(1)3 x2=y+12=z34  \dfrac{{x - 0}}{{2 - 0}} = \dfrac{{y - \left( { - 1} \right)}}{{ - 3 - \left( { - 1} \right)}} = \dfrac{{z - 3}}{{\left( { - 1} \right) - 3}} \\\ \Rightarrow \dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z - 3}}{{ - 4}} \\\
The direction ratio of BCBC is 2,2,4\left\langle {2, - 2, - 4} \right\rangle
Equate the equation of BCBC to some variable, say λ\lambda
So, let x2=y+12=z34=λ\dfrac{x}{2} = \dfrac{{y + 1}}{{ - 2}} = \dfrac{{z - 3}}{{ - 4}} = \lambda
Then, general point on line BCBC is given by,
x2=λ,y+12=λ,z34=λ x=2λ,y=2λ1,z=4λ+3 D=(2λ,2λ1,4λ+3)  \dfrac{x}{2} = \lambda ,\dfrac{{y + 1}}{{ - 2}} = \lambda ,\dfrac{{z - 3}}{{ - 4}} = \lambda \\\ x = 2\lambda ,y = - 2\lambda - 1,z = - 4\lambda + 3 \\\ D = \left( {2\lambda , - 2\lambda - 1, - 4\lambda + 3} \right) \\\
Find the direction ratios of ADAD.
2λ1,2λ18,4λ+34=2λ1,2λ9,4λ1\left\langle {2\lambda - 1, - 2\lambda - 1 - 8, - 4\lambda + 3 - 4} \right\rangle = \left\langle {2\lambda - 1, - 2\lambda - 9, - 4\lambda - 1} \right\rangle
As we know, BCADBC \bot AD , the dot product of direction ratios will be equal to 0.
2,2,4.2λ1,2λ9,4λ1=0 2(2λ1)2(2λ9)4(4λ1)=0 4λ2+4λ+18+16λ+4=0 24λ+20=0 λ=2024 λ=56  \left\langle {2, - 2, - 4} \right\rangle .\left\langle {2\lambda - 1, - 2\lambda - 9, - 4\lambda - 1} \right\rangle = 0 \\\ \Rightarrow 2\left( {2\lambda - 1} \right) - 2\left( { - 2\lambda - 9} \right) - 4\left( { - 4\lambda - 1} \right) = 0 \\\ \Rightarrow 4\lambda - 2 + 4\lambda + 18 + 16\lambda + 4 = 0 \\\ \Rightarrow 24\lambda + 20 = 0 \\\ \Rightarrow \lambda = - \dfrac{{20}}{{24}} \\\ \Rightarrow \lambda = - \dfrac{5}{6} \\\
On substituting the value of λ=56\lambda = - \dfrac{5}{6} in the general point of D(2λ,2λ1,4λ+3)D\left( {2\lambda , - 2\lambda - 1, - 4\lambda + 3} \right) , we get,
(2(56),2(56)1,4(56)+3) =(53,531,103+3) =(53,23,193)  \left( {2\left( { - \dfrac{5}{6}} \right), - 2\left( { - \dfrac{5}{6}} \right) - 1, - 4\left( { - \dfrac{5}{6}} \right) + 3} \right) \\\ = \left( { - \dfrac{5}{3},\dfrac{5}{3} - 1,\dfrac{{10}}{3} + 3} \right) \\\ = \left( { - \dfrac{5}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right) \\\
Thus, the coordinates of foot of perpendicular are (53,23,193)\left( {\dfrac{{ - 5}}{3},\dfrac{2}{3},\dfrac{{19}}{3}} \right).
Hence, option A is the correct option.

Note: If (x1,y1,z1)\left( {{x_1},{y_1},{z_1}} \right) and (x2,y2,z2)\left( {{x_2},{y_2},{z_2}} \right) are two points on the line, then the equation of line is xx1x2x1=yy1y2y1=zz1z2z1\dfrac{{x - {x_1}}}{{{x_2} - {x_1}}} = \dfrac{{y - {y_1}}}{{{y_2} - {y_1}}} = \dfrac{{z - {z_1}}}{{{z_2} - {z_1}}}. The dot product of direction ratios of two perpendicular lines is always zero. Also, the direction ratios of two parallel lines are the same.