Solveeit Logo

Question

Question: The coordinates of midpoints of the sides of a triangle ABC are D(2, 1), E(5, 3), F(3, 7). Then sum ...

The coordinates of midpoints of the sides of a triangle ABC are D(2, 1), E(5, 3), F(3, 7). Then sum of lengths of sides of the triangle is

A

2(20+37+13\sqrt{20} + \sqrt{37} + \sqrt{13})

B

2(10+35+15\sqrt{10} + \sqrt{35} + \sqrt{15})

C

(20+37+13\sqrt{20} + \sqrt{37} + \sqrt{13})

D

(10+35+15\sqrt{10} + \sqrt{35} + \sqrt{15})

Answer

2(20+37+13\sqrt{20} + \sqrt{37} + \sqrt{13})

Explanation

Solution

FE || BC ; FD || AC ; DE || AB

Also BC = 2FE, AC = 2FD; AB = 2DE

Now BC = 2. (53)2+(37)2\sqrt{(5 - 3)^{2} + (3–7)^{2}}= 45\sqrt{5}

Similarly, AC = 237\sqrt{37}; AB = 213\sqrt{13}

AB + BC + CA = 2(20+37+13\sqrt{20} + \sqrt{37} + \sqrt{13})