Solveeit Logo

Question

Question: The coordinates of centre of mass of the following quarter circular arc is – ![](https://cdn.purees...

The coordinates of centre of mass of the following quarter circular arc is –

A

(r2,r2)\left( \frac{r}{2},\frac{r}{2} \right)

B

(2r3,2r3)\left( \frac{2r}{3},\frac{2r}{3} \right)

C

(2rπ,2rπ)\left( \frac{2r}{\pi},\frac{2r}{\pi} \right)

D

(4rπ,4rπ)\left( \frac{4r}{\pi},\frac{4r}{\pi} \right)

Answer

(2rπ,2rπ)\left( \frac{2r}{\pi},\frac{2r}{\pi} \right)

Explanation

Solution

dm = lRdq = 2mπ\frac{2m}{\pi}dq

\ xcm = 1 m\frac { 1 } { \mathrm {~m} } xdm\int_{}^{}{xdm}= 1m0π/2Rcosθ2mπdθ\frac{1}{m}\int_{0}^{\pi/2}{R\cos\theta\frac{2m}{\pi}d\theta}

Similarly ycm = 1m0π/2Rsin.θ2mπdθ\frac{1}{m}\int_{0}^{\pi/2}{R{sin.}\theta\frac{2m}{\pi}d\theta}