Solveeit Logo

Question

Chemistry Question on kinetics equations

The coordinates of a moving particle at any time t are given by x=αt3x=\alpha {{t}^{3}} and y=t3.y={{t}^{3}}. The speed of the particle at time t is given by

A

3tα2+β23t\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}}

B

3t2α2+β23{{t}^{2}}\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}}

C

t2α2+β2{{t}^{2}}\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}}

D

α2+β2\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}}

Answer

3t2α2+β23{{t}^{2}}\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}}

Explanation

Solution

x=αt3,y=βt3x=\alpha \,\,{{t}^{3}},\,\,y=\beta {{t}^{3}} vx=dxdt=3αt2{{v}_{x}}=\frac{dx}{dt}=3\alpha {{t}^{2}} vy=dydt=3βt2{{v}_{y}}=\frac{dy}{dt}=3\beta {{t}^{2}} Resultant velocity, v=vx2+vy2v=\sqrt{{{v}_{x}}^{2}+{{v}_{y}}^{2}} =9α2t4+9β2t4=\sqrt{9{{\alpha }^{2}}{{t}^{4}}+9{{\beta }^{2}}{{t}^{4}}} =3t2α2+β2=3{{t}^{2}}\sqrt{{{\alpha }^{2}}+{{\beta }^{2}}}