Question
Question: The coordinates of A, B, C are \[(6,3),( - 3,5),(4, - 2)\], respectively, and P is any point \[(x,y)...
The coordinates of A, B, C are (6,3),(−3,5),(4,−2), respectively, and P is any point (x,y). Show that the ratio of the area of ΔPBCto that ofΔABC is 7(x+y−2).
Solution
As all the three coordinates of triangle is known so to calculate the area of both the triangles, we use determinant method as \Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}} {{x_1}}&{{y_1}}&1 \\\ {{x_2}}&{{y_2}}&1 \\\ {{x_3}}&{{y_3}}&1 \end{array}} \right|} \right|and hence, take the ratios of both the triangles it will be our required answer.
Complete step-by-step answer:
As the coordinates of ΔABCare A(x1,y1)=(6,3),B(x2,y2)=(−3,5)and C(x3,y3)=(4,−2).
To, calculate the area of both the triangles we use determinant method as \Delta = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\\
{{x_2}}&{{y_2}}&1 \\\
{{x_3}}&{{y_3}}&1
\end{array}} \right|} \right|
So calculating the area of ΔABC, we substitute the values A(x1,y1)=(6,3),B(x2,y2)=(−3,5)and C(x3,y3)=(4,−2)in the above formula, we get,
\Rightarrow $$$$\Delta ABC = \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
6&3&1 \\\
{ - 3}&5&1 \\\
4&{ - 2}&1
\end{array}} \right|} \right|
On expanding the determinant, we get,
\Rightarrow $$$$\Delta ABC = \left| {\dfrac{1}{2}\left( {6\left( {5 + 2} \right) - 3\left( { - 3 - 4} \right) + 1\left( {6 - 20} \right)} \right)} \right|
On simplifying further, we get,
\Rightarrow $$$$\Delta ABC = \left| {\dfrac{1}{2}\left( {42 + 21 - 14} \right)} \right|
On solving the bracket, we get,
\Rightarrow $$$$\Delta ABC = \left| {\dfrac{1}{2}\left( {49} \right)} \right|
Hence, the area of ΔABC=249.
Now, calculating the area of ΔPBCusing the determinant method as,