Solveeit Logo

Question

Question: The contrapositive of \(p \to \left( {\neg q \to \neg r} \right)\) A.\(\left( {\neg q \wedge r} \r...

The contrapositive of p(¬q¬r)p \to \left( {\neg q \to \neg r} \right)
A.(¬qr)¬p\left( {\neg q \wedge r} \right) \to \neg p
B.(q¬r)¬p\left( {q \wedge \neg r} \right) \to \neg p
C.p(¬rq)p \to \left( {\neg r \vee q} \right)
D.p(qr)p \wedge \left( {q \vee r} \right)

Explanation

Solution

Hint: If the conditional statement is aba \to b, then the contrapositive statement is ¬b¬a\neg b \to \neg a. Write the contrapositive statement for the given conditional statement. Then solve the bracket using the condition ab¬aba \to b \equiv \neg a \vee b. To get the final answer, use to De Morgan’s law, ¬(pq)=¬p¬q\neg \left( {p \wedge q} \right) = \neg p \vee \neg q

Complete step-by-step answer:
We know that if the conditional statement is aba \to b, then the contrapositive statement is ¬b¬a\neg b \to \neg a
From the given conditional statement, p(¬q¬r)p \to \left( {\neg q \to \neg r} \right), we can write the contrapositive statement as,
¬(¬q¬r)¬p\neg \left( {\neg q \to \neg r} \right) \to \neg p.
Now, we will solve the bracket.
As we know, ab¬aba \to b \equiv \neg a \vee b
So, the contrapositive expression is equivalent to ¬(¬q¬r)¬p¬(q¬r)¬p\neg \left( {\neg q \to \neg r} \right) \to \neg p \equiv \neg \left( {q \vee \neg r} \right) \to \neg p
Now, we will apply De Morgan’s law, which states that, ¬(ab)=¬a¬b\neg \left( {a \wedge b} \right) = \neg a \vee \neg b
Therefore, for ¬(q¬r)¬p\neg \left( {q \vee \neg r} \right) \to \neg p, we get,
¬(q¬r)¬p(¬qr)¬p\neg \left( {q \vee \neg r} \right) \to \neg p \equiv \left( {\neg q \wedge r} \right) \to \neg p
Hence, option A is correct.

Note: If the conditional statement is pqp \to q, then the converse is qpq \to p. If the conditional statement is pqp \to q, then the inverse is ¬p¬q\neg p \to \neg q and if the conditional statement is pqp \to q, then the contrapositive statement is ¬q¬p\neg q \to \neg p. According to De Morgan’s law, ¬(pq)=¬p¬q\neg \left( {p \wedge q} \right) = \neg p \vee \neg q