Solveeit Logo

Question

Mathematics Question on Applications of Determinants and Matrices

The constant term of the polynomial x+3xx+2 xx+1x1 x+22x3x+1 \begin{vmatrix} {x+3}&{x} &{x+2}\\\ {x}&{x+1}& {x-1} \\\ {x+2}&{2x}&{3x+1}\\\ \end{vmatrix} is ________

A

-1

B

1

C

0

D

2

Answer

-1

Explanation

Solution

x+3xx+2 xx+1x1 x+22x3x+1=f(x)\begin{vmatrix}x+3 & x & x+2 \\\ x & x+1 & x-1 \\\ x+2 & 2 x & 3 x+1\end{vmatrix}=f(x)
Applying R2R2R1R_{2} \rightarrow R_{2}-R_{1} and R3R3R1R_{3} \rightarrow R_{3}-R_{1}
f(x)=x+3xx+2 313 1x2x1f(x)=\begin{vmatrix} x+3 & x & x+2 \\\ -3 & 1 & -3 \\\ -1 & x & 2 x-1 \end{vmatrix}
Applying C1C1C3 and C2C2C3C_{1} \rightarrow C_{1}-C_{3} \text { and } C_{2} \rightarrow C_{2}-C_{3}
f(x)=12x+2 043 2x1x2x1f(x)= \begin{vmatrix} 1 & -2 & x+2 \\\ 0 & 4 & -3 \\\ -2 x & 1-x & 2 x-1 \end{vmatrix}
Expand w.r.t. ' C1C_{1} '
f(x)=[4(2x1)+3(1x)]f(x)=[4(2 x-1)+3(1-x)]
+(2x)[64(x+2)]+(-2 x)[6-4(x+2)]
f(x)=[8x4+33x]+[2x][4x2]f(x)=[8 x-4+3-3 x]+[-2 x][-4 x-2]
f(x)=(5x1)+(8x2+4x)f(x)=(5 x-1)+\left(8 x^{2}+4 x\right)
f(x)=8x2+9x1f(x)=8 x^{2}+9 x-1
Hence, the constant term of quadratic equation is 1-1