Solveeit Logo

Question

Mathematics Question on Sequence and series

The condition that the roots of the equation x3+3px2+3qx+r=0{{x}^{3}}+3p{{x}^{2}}+3qx+r=0 are in the Arithmetic Progression is:

A

2p33pq+r=02{{p}^{3}}-3pq+r=0

B

2p3+3pq+r=02{{p}^{3}}+3pq+r=0

C

2p33pqr=02{{p}^{3}}-3pq-r=0

D

p3+3pqr=0{{p}^{3}}+3pq-r=0

Answer

2p33pq+r=02{{p}^{3}}-3pq+r=0

Explanation

Solution

Let αβ,α,α+β\alpha -\beta ,\,\alpha ,\,\alpha +\beta
be the roots of the equation
x3+3px2+3qx+r=0{{x}^{3}}+3p{{x}^{2}}+3qx+r=0 .
\therefore Sum of the roots
=ba=-\frac{b}{a}
\Rightarrow αβ+α+α+β=3p1\alpha -\beta +\alpha +\alpha +\beta =\frac{-3p}{1}
\Rightarrow 3α=3p3\alpha =-3p
\Rightarrow α=p\alpha =-p
\because α\alpha satisfies the given equation.
Put x=p,x=-p,
we get
p3+3p33pq+r=0-{{p}^{3}}+3{{p}^{3}}-3pq+r=0
\Rightarrow 2p33pq+r=02{{p}^{3}}-3pq+r=0