Solveeit Logo

Question

Question: The condition for \[y = a{x^4} + b{x^3} + c{x^2} + dx + e\] to have points of inflection is (a) \[...

The condition for y=ax4+bx3+cx2+dx+ey = a{x^4} + b{x^3} + c{x^2} + dx + e to have points of inflection is
(a) b24ac>0{b^2} - 4ac > 0
(b) 3b28ac=03{b^2} - 8ac = 0
(c) 3b28ac>03{b^2} - 8ac > 0
(d) 3b28ac<03{b^2} - 8ac < 0

Explanation

Solution

Here, we need to find the condition for which the given equation has points of inflection. A function f(x)f\left( x \right) has points of inflection if its second derivative is equal to zero, that is f(x)=0f''\left( x \right) = 0. First, we will find the second derivative of the given function. Then, we will solve the resulting quadratic function using the quadratic formula and use the expression with the determinant to find the required condition.
Formula Used:

  1. The derivative of a function of the form af(x)+baf\left( x \right) + b can be written as d(af(x)+b)dx=ad(f(x))x+b\dfrac{{d\left( {af\left( x \right) + b} \right)}}{{dx}} = a\dfrac{{d\left( {f\left( x \right)} \right)}}{x} + b.
  2. The derivative of the function of the form f(x)=xnf\left( x \right) = {x^n} is written as f(x)=nxn1f'\left( x \right) = n{x^{n - 1}}.
    3)The derivative of a constant is always 0.
  3. The quadratic formula states that the roots of a quadratic equation Ax2+Bx+C=0A{x^2} + Bx + C = 0 are given by x=B±D2Ax = \dfrac{{ - B \pm \sqrt D }}{{2A}}, where DD is the discriminant given by the formula D=B24ACD = {B^2} - 4AC.

Complete step by step solution:
A function f(x)f\left( x \right) has points of inflection if its second derivative is equal to zero, that is f(x)=0f''\left( x \right) = 0.
First, we will find the first derivative of the given function.
Differentiating both sides of the equation with respect to xx, we get
dydx=d(ax4+bx3+cx2+dx+e)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4} + b{x^3} + c{x^2} + dx + e} \right)}}{{dx}}
The right hand side is the derivative of a sum of functions.
Therefore, we can simplify the equation to get
dydx=d(ax4)dx+d(bx3)dx+d(cx2)dx+d(dx)dx+d(e)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}
Therefore, the equation becomes
We know that the derivative of a function of the form af(x)+baf\left( x \right) + b can be written as d(af(x)+b)dx=ad(f(x))x+b\dfrac{{d\left( {af\left( x \right) + b} \right)}}{{dx}} = a\dfrac{{d\left( {f\left( x \right)} \right)}}{x} + b.
Therefore, we get
d(ax4)dx=ad(x4)dx\Rightarrow \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}}
d(bx3)dx=bd(x3)dx\Rightarrow \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} = b\dfrac{{d\left( {{x^3}} \right)}}{{dx}}
d(cx2)dx=cd(x2)dx\Rightarrow \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} = c\dfrac{{d\left( {{x^2}} \right)}}{{dx}}
d(dx)dx=dd(x)dx\Rightarrow \dfrac{{d\left( {dx} \right)}}{{dx}} = d\dfrac{{d\left( x \right)}}{{dx}}
d(e)dx=ed(1)dx\Rightarrow \dfrac{{d\left( e \right)}}{{dx}} = e\dfrac{{d\left( 1 \right)}}{{dx}}
Substituting d(ax4)dx=ad(x4)dx\dfrac{{d\left( {a{x^4}} \right)}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}}, d(bx3)dx=bd(x3)dx\dfrac{{d\left( {b{x^3}} \right)}}{{dx}} = b\dfrac{{d\left( {{x^3}} \right)}}{{dx}}, d(cx2)dx=cd(x2)dx\dfrac{{d\left( {c{x^2}} \right)}}{{dx}} = c\dfrac{{d\left( {{x^2}} \right)}}{{dx}}, d(dx)dx=dd(x)dx\dfrac{{d\left( {dx} \right)}}{{dx}} = d\dfrac{{d\left( x \right)}}{{dx}}, and d(e)dx=ed(1)dx\dfrac{{d\left( e \right)}}{{dx}} = e\dfrac{{d\left( 1 \right)}}{{dx}} in the equation dydx=d(ax4)dx+d(bx3)dx+d(cx2)dx+d(dx)dx+d(e)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}}, we get
dydx=ad(x4)dx+bd(x3)dx+cd(x2)dx+dd(x)dx+ed(1)dx\Rightarrow \dfrac{{dy}}{{dx}} = a\dfrac{{d\left( {{x^4}} \right)}}{{dx}} + b\dfrac{{d\left( {{x^3}} \right)}}{{dx}} + c\dfrac{{d\left( {{x^2}} \right)}}{{dx}} + d\dfrac{{d\left( x \right)}}{{dx}} + e\dfrac{{d\left( 1 \right)}}{{dx}}
The derivative of the function of the form f(x)=xnf\left( x \right) = {x^n} is written as f(x)=nxn1f'\left( x \right) = n{x^{n - 1}}.
The derivative of a constant is always 0.
Therefore, the equation becomes
\Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( {1 \times {x^0}} \right) + e\left( 0 \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( {1 \times 1} \right) + 0 \\\ \Rightarrow \dfrac{{dy}}{{dx}} = a\left( {4{x^3}} \right) + b\left( {3{x^2}} \right) + c\left( {2x} \right) + d\left( 1 \right) \\\
Multiplying the terms of the expression, we get the first derivative as
dydx=4ax3+3bx2+2cx+d\Rightarrow \dfrac{{dy}}{{dx}} = 4a{x^3} + 3b{x^2} + 2cx + d
Now, we will differentiate the first derivative to find the second derivative.
Differentiating both sides of the equation with respect to xx, we get
\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3} + 3b{x^2} + 2cx + d} \right)}}{{dx}} \\\ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {3b{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {2cx} \right)}}{{dx}} + \dfrac{{d\left( d \right)}}{{dx}} \\\
Simplifying the expression, we get
d2ydx2=4ad(x3)dx+3bd(x2)dx+2cd(x)dx+dd(1)dx\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4a\dfrac{{d\left( {{x^3}} \right)}}{{dx}} + 3b\dfrac{{d\left( {{x^2}} \right)}}{{dx}} + 2c\dfrac{{d\left( x \right)}}{{dx}} + d\dfrac{{d\left( 1 \right)}}{{dx}}
Therefore, we get
d2ydx2=4a(3x2)+3b(2x)+2c(1)+d(0)\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 4a\left( {3{x^2}} \right) + 3b\left( {2x} \right) + 2c\left( 1 \right) + d\left( 0 \right)
Multiplying the terms of the expression, we get the first derivative as
d2ydx2=12ax2+6bx+2c\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 12a{x^2} + 6bx + 2c
This is the second derivative of y=ax4+bx3+cx2+dx+ey = a{x^4} + b{x^3} + c{x^2} + dx + e.
Now, a function f(x)f\left( x \right) has points of inflection if its second derivative is equal to zero, that is f(x)=0f''\left( x \right) = 0.
Therefore, the condition such that y=ax4+bx3+cx2+dx+ey = a{x^4} + b{x^3} + c{x^2} + dx + e has points of inflection is
d2ydx2=12ax2+6bx+2c=0\Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = 12a{x^2} + 6bx + 2c = 0
We will find the roots of the quadratic equation 12ax2+6bx+2c=012a{x^2} + 6bx + 2c = 0 using the quadratic formula to find the required conditions.
The quadratic formula states that the roots of a quadratic equation Ax2+Bx+C=0A{x^2} + Bx + C = 0 are given by x=B±D2Ax = \dfrac{{ - B \pm \sqrt D }}{{2A}}, where DD is the discriminant given by the formula D=B24ACD = {B^2} - 4AC.
First, let us find the value of the discriminant.
Comparing the equation 12ax2+6bx+2c=012a{x^2} + 6bx + 2c = 0 with the standard form of a quadratic equation Ax2+Bx+C=0A{x^2} + Bx + C = 0, we get
A=12aA = 12a, B=6bB = 6b, and C=2cC = 2c
Substituting A=12aA = 12a, B=6bB = 6b, and C=2cC = 2c in the formula for discriminant, we get
D=(6b)24(12a)(2c)\Rightarrow D = {\left( {6b} \right)^2} - 4\left( {12a} \right)\left( {2c} \right)
Simplifying the expression, we get
D=36b296ac\Rightarrow D = 36{b^2} - 96ac
Now, substituting A=12aA = 12a, B=6bB = 6b, and D=36b296acD = 36{b^2} - 96ac in the quadratic formula, we get
x=6b±36b296ac2×12a\Rightarrow x = \dfrac{{ - 6b \pm \sqrt {36{b^2} - 96ac} }}{{2 \times 12a}}
Therefore, we get
36b296ac>0\Rightarrow \sqrt {36{b^2} - 96ac} > 0
Squaring both sides, we get
36b296ac>0\Rightarrow 36{b^2} - 96ac > 0
Dividing both sides by 12, we get
36b296ac12>012 3b28ac>0 \Rightarrow \dfrac{{36{b^2} - 96ac}}{{12}} > \dfrac{0}{{12}} \\\ \Rightarrow 3{b^2} - 8ac > 0 \\\

Therefore, the condition for y=ax4+bx3+cx2+dx+ey = a{x^4} + b{x^3} + c{x^2} + dx + e to have points of inflection is 3b28ac>03{b^2} - 8ac > 0.

Note:
We simplified dydx=d(ax4+bx3+cx2+dx+e)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4} + b{x^3} + c{x^2} + dx + e} \right)}}{{dx}} to dydx=d(ax4)dx+d(bx3)dx+d(cx2)dx+d(dx)dx+d(e)dx\dfrac{{dy}}{{dx}} = \dfrac{{d\left( {a{x^4}} \right)}}{{dx}} + \dfrac{{d\left( {b{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {c{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {dx} \right)}}{{dx}} + \dfrac{{d\left( e \right)}}{{dx}} and d2ydx2=d(4ax3+3bx2+2cx+d)dx\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3} + 3b{x^2} + 2cx + d} \right)}}{{dx}} to d2ydx2=d(4ax3)dx+d(3bx2)dx+d(2cx)dx+d(d)dx\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{d\left( {4a{x^3}} \right)}}{{dx}} + \dfrac{{d\left( {3b{x^2}} \right)}}{{dx}} + \dfrac{{d\left( {2cx} \right)}}{{dx}} + \dfrac{{d\left( d \right)}}{{dx}}. This is because the right hand side is a derivative of the sum of functions. The derivative of the sum of two functions is the sum of the derivatives of the two functions, that is d[f(x)+g(x)]dx=d[f(x)]dx+d[g(x)]dx\dfrac{{d\left[ {f\left( x \right) + g\left( x \right)} \right]}}{{dx}} = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} + \dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}.