Solveeit Logo

Question

Question: The condition for the lines \[lx + my + n = 0\] and \[{l_1}x + {m_1}y + {n_1} = 0\] to be conjugate ...

The condition for the lines lx+my+n=0lx + my + n = 0 and l1x+m1y+n1=0{l_1}x + {m_1}y + {n_1} = 0 to be conjugate with respect to the circle x2+y2=r2{x^2} + {y^2} = {r^2} is
(A) r2(ll1+mm1)=nn1{r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}
(B) r2(ll1mm1)=nn1{r^2}\left( {l{l_1} - m{m_1}} \right) = n{n_1}
(C) r2(ll1+mm1)+nn1=0{r^2}\left( {l{l_1} + m{m_1}} \right) + n{n_1} = 0
(D) r2(lm1+l1m)=nn1{r^2}\left( {l{m_1} + {l_1}m} \right) = n{n_1}

Explanation

Solution

Use the concept of conjugate lines which states that two lines are conjugate if the pole of a point on the line lies on the other line. Find the coordinate of any one point lying on the line lx+my+n=0lx + my + n = 0, then substitute the obtained point in the equation of polar for the given circle and then equate this equation to the given equation of line l1x+m1y+n1=0{l_1}x + {m_1}y + {n_1} = 0.

Complete step-by-step solution:
Let’s take a point P(x1,y1)P\left( {{x_1},{y_1}} \right) on line lx+my+n=0lx + my + n = 0
Putting x1{x_1} in the equation of line to find the corresponding yy coordinate, we get
lx1+my1+n=0\Rightarrow l{x_1} + m{y_1} + n = 0
On simplifying, we get
y1=lx1nm\Rightarrow {y_1} = \dfrac{{ - l{x_1} - n}}{m}
Therefore, the coordinate of point PP is (x1,lx1nm)\left( {{x_1},\dfrac{{ - l{x_1} - n}}{m}} \right).
Polar of a point P(x1,y1)P\left( {{x_1},{y_1}} \right) with respect to a circle x2+y2=r2{x^2} + {y^2} = {r^2} is given by xx1+yy1r2=0(1)x{x_1} + y{y_1} - {r^2} = 0 - - - (1).
Substituting point P(x1,y1)P\left( {{x_1},{y_1}} \right) in (1)(1) , we get
xx1+y(lx1nm)r2=0\Rightarrow x{x_1} + y\left( {\dfrac{{ - l{x_1} - n}}{m}} \right) - {r^2} = 0
On solving,
mxx1+y(lx1yny)mr2=0\Rightarrow mx{x_1} + y\left( { - l{x_1}y - ny} \right) - m{r^2} = 0
mxx1y(lx1y+ny)mr2=0\Rightarrow mx{x_1} - y\left( {l{x_1}y + ny} \right) - m{r^2} = 0
On rearranging,
(mx1)x(lx1y+ny)ymr2=0\Rightarrow \left( {m{x_1}} \right)x - \left( {l{x_1}y + ny} \right)y - m{r^2} = 0
Since, the lines lx+my+n=0lx + my + n = 0 and l1x+m1y+n1=0{l_1}x + {m_1}y + {n_1} = 0 are conjugate so on comparing (mx1)x(lx1y+ny)ymr2=0\left( {m{x_1}} \right)x - \left( {l{x_1}y + ny} \right)y - m{r^2} = 0 with the given equation of line l1x+m1y+n1=0{l_1}x + {m_1}y + {n_1} = 0, we get
l1mx1=m1(lx1+n)=n1(mr2)(2)\Rightarrow \dfrac{{{l_1}}}{{m{x_1}}} = \dfrac{{{m_1}}}{{ - \left( {l{x_1} + n} \right)}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}} - - - (2)
On taking two at a time and solving we get,
l1mx1=n1(mr2)\Rightarrow \dfrac{{{l_1}}}{{m{x_1}}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}}
Taking (mr2)( - m{r^2}) to left hand side and mx1m{x_1} to right hand side,
mr2l1=mn1x1\Rightarrow - m{r^2}{l_1} = m{n_1}{x_1}
On simplifying,
x1=mr2l1mn1\Rightarrow {x_1} = \dfrac{{ - m{r^2}{l_1}}}{{m{n_1}}}
x1=r2l1n1(3)\Rightarrow {x_1} = \dfrac{{ - {r^2}{l_1}}}{{{n_1}}} - - - (3)
Now taking second and third terms of (2)(2) , we get
m1(lx1+n)=n1(mr2)\Rightarrow \dfrac{{{m_1}}}{{ - \left( {l{x_1} + n} \right)}} = \dfrac{{{n_1}}}{{ - \left( {m{r^2}} \right)}}
Taking (mr2)( - m{r^2}) to the left-hand side and (lx1+n) - \left( {l{x_1} + n} \right) to the right-hand side, we get
m1mr2=n1(lx1+n)\Rightarrow - {m_1}m{r^2} = - {n_1}\left( {l{x_1} + n} \right)
Eliminating minus sign from both the sides and on simplification, we get
m1mr2=n1lx1+n1n\Rightarrow {m_1}m{r^2} = {n_1}l{x_1} + {n_1}n
Putting the value of x1{x_1} from (3)(3) , we get
m1mr2=n1l×(r2l1n1)+n1n\Rightarrow {m_1}m{r^2} = {n_1}l \times \left( {\dfrac{{ - {r^2}{l_1}}}{{{n_1}}}} \right) + {n_1}n
On simplification,
m1mr2=r2ll1+n1n\Rightarrow {m_1}m{r^2} = - {r^2}l{l_1} + {n_1}n
Taking (r2ll1)\left( { - {r^2}l{l_1}} \right) to the left-hand side,
m1mr2+r2ll1=n1n\Rightarrow {m_1}m{r^2} + {r^2}l{l_1} = {n_1}n
Taking r2{r^2} common from the left-hand side, we get
r2(m1m+ll1)=n1n\Rightarrow {r^2}\left( {{m_1}m + l{l_1}} \right) = {n_1}n
On rewriting,
r2(ll1+mm1)=nn1\Rightarrow {r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}
Therefore, the condition for the lines lx+my+n=0lx + my + n = 0 and l1x+m1y+n1=0{l_1}x + {m_1}y + {n_1} = 0 to be conjugate with respect to the circle x2+y2=r2{x^2} + {y^2} = {r^2} is r2(ll1+mm1)=nn1{r^2}\left( {l{l_1} + m{m_1}} \right) = n{n_1}.
Hence, option (A) is correct.

Note: We have used that the polar of a point P(x1,y1)P\left( {{x_1},{y_1}} \right) with respect to a circle x2+y2=r2{x^2} + {y^2} = {r^2} is xx1+yy1r2=0x{x_1} + y{y_1} - {r^2} = 0. But if the equation of circle is x2+y2+2gx+2fy+c=0{x^2} + {y^2} + 2gx + 2fy + c = 0 then the equation of polar will be given by xx1+yy1+g(x+x1)+f(y+y1)+c=0x{x_1} + y{y_1} + g\left( {x + {x_1}} \right) + f\left( {y + {y_1}} \right) + c = 0.