Solveeit Logo

Question

Mathematics Question on Conic sections

The condition for the line y=mx+cy = mx +c to be a normal to the parabola y=4axy = 4ax is _______

A

c=amc =\frac {a}{m}

B

c=2am+am3c = 2am+am^3

C

c=2amam3c=2am-am^3

D

c=amc=\frac {a}{m}

Answer

c=2amam3c=2am-am^3

Explanation

Solution

Given that, equation of parabola y2=4axy^{2}=4 a x, let the parametric coordinate is (am2,2am)\left(a m^{2}, 2 a m\right).
2ydydx=4a\Rightarrow 2 y \frac{d y}{d x}=4 a
dydx=2ay\Rightarrow \frac{d y}{d x}=\frac{2 a}{y}
Slope of normal =(y2a)= \left(\frac{-y}{2 a}\right)
At (am2,2am)=2am2a=m\left(a m^{2}, 2 a m\right)=\frac{-2 a m}{2 a}=-m
Now, the equation of normal to the parabola is
(y2am)=(m)(xam2)(y-2 a m)=(-m)\left(x-a m^{2}\right)
y2am=mx+am3y-2 a m=-mx +a m^{3}
mx+y(2am+am3)=0mx +y-\left(2am +a m^{3}\right)=0...(i)
Also, given the line
y=mx+cy=mx +c or mxy+c=0m x-y +c=0...(ii)
is normal to parabola, then
On comparing c=2amam3c=-2 a m-a m^{3}