Solveeit Logo

Question

Question: The composite mapping \[{\text{fog}}\]of the map, \[{\text{f}}:\mathbb{R} \to \mathbb{R}\], \[{\text...

The composite mapping fog{\text{fog}}of the map, f:RR{\text{f}}:\mathbb{R} \to \mathbb{R}, f(x) = sinx{\text{f(x) = sinx}}and g:RR{\text{g}}:\mathbb{R} \to \mathbb{R}, g(x) = x2{\text{g(x) = }}{{\text{x}}^{\text{2}}}is
A. x2sinx{{\text{x}}^{\text{2}}}{\text{sinx}}
B. (sinx)2{{\text{(sinx)}}^{\text{2}}}
C. sinx2{\text{sin}}{{\text{x}}^{\text{2}}}
D. sinxx2\dfrac{{{\text{sinx}}}}{{{{\text{x}}^{\text{2}}}}}

Explanation

Solution

As, we are given, f:RR{\text{f}}:\mathbb{R} \to \mathbb{R}, f(x) = sinx{\text{f(x) = sinx}}and g:RR{\text{g}}:\mathbb{R} \to \mathbb{R}, g(x) = x2{\text{g(x) = }}{{\text{x}}^{\text{2}}}, we use fog{\text{fog}}(x)  = f(g(x)){\text{ = f(g(x))}}, to calculate the composite mapping fog{\text{fog}}, it is usually defines as f(g).
It is not also usually equal to gof(x){\text{gof(x)}}.

Complete step by step solution: We have, f:RR{\text{f}}:\mathbb{R} \to \mathbb{R}, f(x) = sinx{\text{f(x) = sinx}}and g:RR{\text{g}}:\mathbb{R} \to \mathbb{R}, g(x) = x2{\text{g(x) = }}{{\text{x}}^{\text{2}}} ,
As we know, according to the definition,
fog{\text{fog}}(x)  = f(g(x)){\text{ = f(g(x))}}
Now we have, g(x) = x2{\text{g(x) = }}{{\text{x}}^{\text{2}}}, so,
Going through the process,
fog{\text{fog}}(x)  = f(g(x)){\text{ = f(g(x))}}
fog(x) = f(x2)\Rightarrow {\text{fog(x) = f(}}{{\text{x}}^{\text{2}}}{\text{)}}
As g:RR{\text{g}}:\mathbb{R} \to \mathbb{R} and g(x) = x2{\text{g(x) = }}{{\text{x}}^{\text{2}}},
Now again, we have, f:RR{\text{f}}:\mathbb{R} \to \mathbb{R},f(x) = sinx{\text{f(x) = sinx}}
So, f(x2) = sin(x2) \Rightarrow {\text{f(}}{{\text{x}}^{\text{2}}}{\text{) = sin(}}{{\text{x}}^{\text{2}}}{\text{)}}.
At the end, we find that, {\text{fog(x) = f(g(x))}}$$$${\text{ = sin}}{{\text{x}}^{\text{2}}}.

Hence the correct option is (C).

Note: You need to remember that fog(x){\text{fog(x)}}is not always equal to gof(x){\text{gof(x)}}.
In this example only, we can see that,
We have {\text{fog(x) = f(g(x))}}$$$${\text{ = sin}}{{\text{x}}^{\text{2}}}
But if we try to calculate, gof(x){\text{gof(x)}} we will get,
{\text{gof(x)}}$$$${\text{ = g(sinx)}}as f(x) = sinx{\text{f(x) = sinx}}and
{\text{g(sinx)}}$$$${\text{ = (sinx}}{{\text{)}}^{\text{2}}}
Which is not equal to fog(x){\text{fog(x)}}