Solveeit Logo

Question

Question: The component of vector \(A = 2\widehat{i} + 3\widehat{j}\)along the vector \(\widehat{i} + \widehat...

The component of vector A=2i^+3j^A = 2\widehat{i} + 3\widehat{j}along the vector i^+j^\widehat{i} + \widehat{j}is-

A

52\frac{5}{\sqrt{2}}

B

10210\sqrt{2}

C

525\sqrt{2}

D

5

Answer

52\frac{5}{\sqrt{2}}

Explanation

Solution

A.Bi+j=(2i^+3j^)(i^+j^)2=2+32=52\frac{\overset{\rightarrow}{A}.\overset{\rightarrow}{B}}{|\overrightarrow{i} + \overrightarrow{j}|} = \frac{(2\widehat{i} + 3\widehat{j})(\widehat{i} + \widehat{j})}{\sqrt{2}} = \frac{2 + 3}{\sqrt{2}} = \frac{5}{\sqrt{2}}