Solveeit Logo

Question

Question: The component of \(3\widehat{i} + 4\widehat{j}\) along \(\widehat{i} + \widehat{j}\) -...

The component of 3i^+4j^3\widehat{i} + 4\widehat{j} along i^+j^\widehat{i} + \widehat{j} -

A

(a)i^+j^2\frac{\widehat{i} + \widehat{j}}{2}

A

(b)32(i^+j^)\frac{3}{2}(\widehat{i} + \widehat{j})

A

(c)52(i^+j^)\frac{5}{2}(\widehat{i} + \widehat{j})

A

(d)72(i^+j^)\frac{7}{2}(\widehat{i} + \widehat{j})

Explanation

Solution

(d)

Component of A\overset{\rightarrow}{A} along B\overset{\rightarrow}{B}

=A.BB=3+42\frac{\overset{\rightarrow}{A}.\overset{\rightarrow}{B}}{B} = \frac{3 + 4}{\sqrt{2}} = 72\frac{7}{\sqrt{2}}

In vector form = 72\frac{7}{\sqrt{2}} B^\widehat{B}

= 72\frac { 7 } { \sqrt { 2 } } (i^+j^2)\left( \frac{\widehat{i} + \widehat{j}}{\sqrt{2}} \right)=72(i^+j^)\frac{7}{2}(\widehat{i} + \widehat{j})