Question
Question: The complex numbers z<sub>1</sub> and z<sub>2</sub> are such that z<sub>1</sub> ≠ z<sub>2</sub> and ...
The complex numbers z1 and z2 are such that z1 ≠ z2 and z1=z2. If z1 has positive real part and z2 has negative imaginary part, then (z1−z2z1+z2)may be
A
Zero
B
Real and positive
C
Real and negative
D
Purely imaginary
Answer
Purely imaginary
Explanation
Solution
Sol. We have z1=z2, Re(z1) > 0, Im( z2) < 0.
Re(z1−z2z1+z2)=21(z1−z2z1+z2+zˉ1−zˉ2zˉ1+zˉ2)
= 21((z1−z2)(zˉ1−zˉ2)(z1+z2)(zˉ1−zˉ2)+(zˉ1+zˉ2)(z1−z2))
= 21(∣z1−z2∣2z1zˉ1−z1zˉ2+z2zˉ1−z2zˉ2+z1zˉ1+z1zˉ2−z2zˉ1−z2zˉ2)
=21(∣z1−z2∣22∣z1∣2−2∣z2∣2)= 0 ⇒ (z1−z2z1+z2) is purely imaginary