Question
Question: The complex numbers \(z_{1},z_{2}\) and \(z_{3}\) satisfying \(\frac{z_{1} - z_{3}}{z_{2} - z_{3}} ...
The complex numbers z1,z2 and z3 satisfying
z2−z3z1−z3=21−i3are the vertices of a triangle which is
A
Of area zero
B
Right-angled isosceles
C
Equilateral
D
Obtuse-angled isosceles
Answer
Equilateral
Explanation
Solution
Sol. Taking mod of both sides of given relation
z2−z3z1−z3=21−i23=41+43=1So, ∣z1−z3∣=∣z2−z3∣. Also, amp (z2−z3z1−z3) = tan−1(−3)=−3π or
amp(z1−z3z2−z3)=3π or ∠z2z3z1=60∘
∴ The triangle has two sides equal and the angle between the equal sides =60∘. So it is equilateral.