Solveeit Logo

Question

Question: The complex numbers z = x + iy which satisfy the equation \(\left| {\dfrac{{{\text{z - 5i}}}}{{{\tex...

The complex numbers z = x + iy which satisfy the equation z - 5iz + 5i = 1\left| {\dfrac{{{\text{z - 5i}}}}{{{\text{z + 5i}}}}} \right|{\text{ = 1}} lie on:
A. the x - axis
B. straight line y = 5
C. a circle through the origin
D. none of these

Explanation

Solution

Hint: To solve this problem we will use the property of modulus of complex numbers and use given conditions to create equations to find the solution.

Complete step-by-step answer:
Now, we are given a complex number z, where z = x + iy. Now, we will apply the property of complex numbers. We will use the property: x + iy = x2 + (iy)2\left| {{\text{x + iy}}} \right|{\text{ }} = {\text{ }}\sqrt {{{\text{x}}^2}{\text{ + (iy}}{{\text{)}}^2}} .
We will put the value of z in the given condition z - 5iz + 5i = 1\left| {\dfrac{{{\text{z - 5i}}}}{{{\text{z + 5i}}}}} \right|{\text{ = 1}} and also apply the above property.
Now, putting z = x + iy in the given condition, we get
x + iy - 5ix + iy + 5i = 1\left| {\dfrac{{{\text{x + iy - 5i}}}}{{{\text{x + iy + 5i}}}}} \right|{\text{ = 1}}
Now, separating the real part and imaginary part, we get
x + i(y - 5)x + i(y + 5) = 1\left| {\dfrac{{{\text{x + i(y - 5)}}}}{{{\text{x + i(y + 5)}}}}} \right|{\text{ = 1}}
Cross - multiplying both sides, we get
x + i(y - 5) = x + i(y + 5)\left| {{\text{x + i(y - 5)}}} \right|{\text{ = }}\left| {{\text{x + i(y + 5)}}} \right|
Using the property x + iy = x2 + (iy)2\left| {{\text{x + iy}}} \right|{\text{ }} = {\text{ }}\sqrt {{{\text{x}}^2}{\text{ + (iy}}{{\text{)}}^2}} in the above equation,
x2 + (i(y - 5))2= x2 + (i(y + 5))2\sqrt {{{\text{x}}^2}{\text{ + (i(y - 5)}}{{\text{)}}^2}} = {\text{ }}\sqrt {{{\text{x}}^2}{\text{ + (i(y + 5)}}{{\text{)}}^2}}
x2 - (y - 5)2= x2 - (y + 5)2\sqrt {{{\text{x}}^2}{\text{ - (y - 5}}{{\text{)}}^2}} = {\text{ }}\sqrt {{{\text{x}}^2}{\text{ - (y + 5}}{{\text{)}}^2}} as i2 = - 1{{\text{i}}^2}{\text{ = - 1}}
Squaring both sides, we get
x2 - (y - 5)2 = x2 - (y + 5)2{{\text{x}}^2}{\text{ - (y - 5}}{{\text{)}}^2}{\text{ = }}{{\text{x}}^2}{\text{ - (y + 5}}{{\text{)}}^2}
Eliminating same terms from both the sides of the above equation, we get
(y - 5)2= (y + 5)2{{\text{(y - 5)}}^2} = {\text{ (y + 5}}{{\text{)}}^2}
(y - 5)2 - (y + 5)2 = 0{{\text{(y - 5)}}^2}{\text{ - (y + 5}}{{\text{)}}^2}{\text{ = 0}}
Using property a2 - b2 = (a - b)(a + b){{\text{a}}^2}{\text{ - }}{{\text{b}}^2}{\text{ = (a - b)(a + b)}} in the above equation,
(y - 5 - y + 5)( y - 5 + y + 5) = 0({\text{y - 5 - y + 5)( y - 5 + y + 5) = 0}} which gives
-10y = 0 or y = 0
Now, y = 0 represents the x – axis. So, all the complex numbers satisfying z - 5iz + 5i = 1\left| {\dfrac{{{\text{z - 5i}}}}{{{\text{z + 5i}}}}} \right|{\text{ = 1}} lies on the x – axis.
So, option (A) is the correct answer.

Note: Such types of problems in which there is a condition which includes the complex number and asks the locus or the path of complex numbers the easiest method is to put the value of complex number x + iy wherever z is written, then solve the equation accordingly to get the desired answer.