Solveeit Logo

Question

Mathematics Question on Complex Numbers and Quadratic Equations

The complex numbers z1,z2z_1, z_2 and z3z_3 satisfying z1z3z2z3=1i32\frac{z_1-z_3}{z_2-z_3}=\frac{1-i \sqrt 3}{2} are the vertices of a triangle which is

A

of area zero

B

right angled isosceles

C

equilateral

D

obtuse angled isosceles

Answer

equilateral

Explanation

Solution


z1z3z2z3=1i32\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}
=cos(π3)+sin(π3)=eiπ3=\cos \left(\frac{-\pi}{3}\right)+\sin \left(\frac{-\pi}{3}\right)=e^{-i} \pi^{3}
z1z3z2z3=eiπ/3=1\therefore\left|\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right|=\left|e^{-i \pi / 3}\right|=1
and angle between z1z3z_{1}-z_{3} and z2z3z_{2}-z_{3} is π3\frac{\pi}{3}.
\therefore triangle is equilateral.