Solveeit Logo

Question

Question: The complex number \[z=x+iy\] which satisfy the equation \[\dfrac{|z-5i|}{|z+5i|}=1\], lie on\[\begi...

The complex number z=x+iyz=x+iy which satisfy the equation z5iz+5i=1\dfrac{|z-5i|}{|z+5i|}=1, lie on(A) The x-axis. (B) The straight line y=5. (C) A circle passes through the origin. (D) None of these. \begin{aligned} & (A)\text{ The x-axis}\text{.} \\\ & (B)\text{ The straight line y=5}\text{.} \\\ & (C)\text{ A circle passes through the origin}\text{.} \\\ & (D)\text{ None of these}\text{.} \\\ \end{aligned}

Explanation

Solution

Hint: We should place z=x+iyz=x+iy in the given equation. We have to apply the concept of finding the magnitude of complex numbers to solve the problem. Now we have to find the equation of locus of (x,y)\left( x,y \right). Once the equation is obtained, we also have to obtain the properties of the equation of locus.

Complete step-by-step answer:
We know that for a complex number z=x+iyz=x+iy, the magnitude is equal to z=x2+y2|z|=\sqrt{{{x}^{2}}+{{y}^{2}}}. Given a complex number z=x+iyz=x+iy . It is also given that z=x+iyz=x+iy satisfy the equation z5iz+5i=1\dfrac{|z-5i|}{|z+5i|}=1As z=x+iyz=x+iy satisfies z5iz+5i=1\dfrac{|z-5i|}{|z+5i|}=1, z5iz+5i=1\dfrac{|z-5i|}{|z+5i|}=1 passes through z=x+iyz=x+iy.
Now let us consider z5iz+5i=1\dfrac{|z-5i|}{|z+5i|}=1
By using cross multiplication,
z5i=z+5i......(1)|z-5i|=|z+5i|......(1).
Now let us substitute z=x+iyz=x+iyin (1).
x+iy5i=x+iy+5i.....(2)|x+iy-5i|=|x+iy+5i|.....(2)
Now let us Consider x+iy5i|x+iy-5i|
Now we will separate the real part of the complex number at one side and the imaginary part of the complex number at the other side.
Hence, x+iy5i=x+i(y5).........(3)|x+iy-5i|=|x+i(y-5)|.........(3)
Now let us consider x+iy+5i|x+iy+5i|
Now we will separate the real part of the complex number at one side and the imaginary part of the complex number at the other side.
Hence, x+iy+5i=x+i(y+5).........(4)|x+iy+5i|=|x+i(y+5)|.........(4)
Now we will substitute equation (3) and equation (4) in equation (2)
x+i(y5)=x+i(y+5)......(5)|x+i(y-5)|=|x+i(y+5)|......(5)
Let us assume z1 as x+i(y5)x+i(y-5).
Hence, we get z1 as z1=x+i(y5)...........(6){{z}_{1}}=x+i(y-5)...........(6)
Let us assume z2 as x+i(y+5)x+i(y+5)
Hence, we get z2 as z2=x+i(y+5)...........(7){{z}_{2}}=x+i(y+5)...........(7).
We know that the magnitude of z=a+ibz=a+ib is z=a+ib=a2+b2|z|=|a+ib|=\sqrt{{{a}^{2}}+{{b}^{2}}}.
By using the formula of magnitude of complex number z=a+ibz=a+ib,
We get Magnitude of z1 =z1|{{z}_{1}}|=x+i(y5)|x+i(y-5)|
Here, the value of a is equal to x and the value of b is equal to (y-5).
z1=x+i(y5)=x2+(y5)2.....(8){{z}_{1}}=|x+i(y-5)|=\sqrt{{{x}^{2}}+{{\left( y-5 \right)}^{2}}}.....(8)
In the similar manner, by using the formula of magnitude of complex number z=a+ibz=a+ib,
We get magnitude of z2 = z2=x+i(y+5)|{{z}_{2}}|=|x+i(y+5)|
Here, the value of x is equal to x and the value of b is equal to (y+5).
By applying the formula for magnitude of a complex number,
z2=x+i(y+5)=x2+(y+5)2.....(9){{z}_{2}}=|x+i(y+5)|=\sqrt{{{x}^{2}}+{{\left( y+5 \right)}^{2}}}.....(9)
Now we will Substitute equation (8) and equation (9) in equation (5)
x2+(y5)2=x2+(y+5)2.....(10)\sqrt{{{x}^{2}}+{{\left( y-5 \right)}^{2}}}=\sqrt{{{x}^{2}}+{{(y+5)}^{2}}}.....(10)
In equation (5), we will square on both sides.
x2+(y5)2=x2+(y+5)2{{x}^{2}}+{{\left( y-5 \right)}^{2}}={{x}^{2}}+{{(y+5)}^{2}}
x2+y210y+25=x2+y2+10y+25\Rightarrow {{x}^{2}}+{{y}^{2}}-10y+25={{x}^{2}}+{{y}^{2}}+10y+25
(x2+y210y+25)(x2+y2+10y+25)=0\Rightarrow \left( {{x}^{2}}+{{y}^{2}}-10y+25 \right)-\left( {{x}^{2}}+{{y}^{2}}+10y+25 \right)=0
x2+y210y+25x2y210y25=0\Rightarrow {{x}^{2}}+{{y}^{2}}-10y+25-{{x}^{2}}-{{y}^{2}}-10y-25=0
20y=0\Rightarrow -20y=0
Now we will multiply with (-1) on both sides
20y=0\Rightarrow 20y=0
y=0\Rightarrow y=0
We know that y=0 represents the equation of x-axis.
Hence, option (A) is correct.

Note: This problem can also get solved in another method.
Now we will multiply and divide z5iz+5i\dfrac{|z-5i|}{|z+5i|} with the conjugate of z5i|z-5i| i.e z+5i|z+5i|.
z5iz+5i.z+5iz+5i=1\dfrac{|z-5i|}{|z+5i|}.\dfrac{|z+5i|}{|z+5i|}=1
We know that (a+b)(ab)=a2b2(a+b)(a-b)={{a}^{2}}-{{b}^{2}} and (a+b)2=a2+b2+2ab{{(a+b)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab.
z2(5i)2z+5i2=1\Rightarrow \dfrac{|{{z}^{2}}-{{(5i)}^{2}}|}{|z+5i{{|}^{2}}}=1
By using cross multiplication
z2(5i)2=z+5i2......(1)\Rightarrow |{{z}^{2}}-{{(5i)}^{2}}|=|z+5i{{|}^{2}}......(1)
Now we will substitute z=x+iyz=x+iy in (1)

& \Rightarrow |{{\left( x+iy \right)}^{2}}-25{{i}^{2}}|={{\left( \sqrt{{{x}^{2}}+{{\left( y+5 \right)}^{2}}} \right)}^{2}}(Here:{{i}^{2}}=-1) \\\ & \Rightarrow |{{x}^{2}}-{{y}^{2}}+25+i(2xy)|={{x}^{2}}+{{y}^{2}}+10y+25 \\\ & \Rightarrow {{\left( {{x}^{2}}-{{y}^{2}}+25 \right)}^{2}}+4{{x}^{2}}{{y}^{2}}={{\left( {{x}^{2}}+{{y}^{2}}+10y+25 \right)}^{2}} \\\ & \Rightarrow {{\left( {{x}^{2}}+{{y}^{2}}+10y+25 \right)}^{2}}-{{\left( {{x}^{2}}-{{y}^{2}}+25 \right)}^{2}}=4{{x}^{2}}{{y}^{2}} \\\ & \Rightarrow \left( 2{{x}^{2}}+10y+25 \right)\left( 2{{y}^{2}}+10y \right)=4{{x}^{2}}{{y}^{2}} \\\ & \Rightarrow 4{{x}^{2}}{{y}^{2}}+20{{y}^{3}}+50{{y}^{2}}+20{{x}^{2}}y+100{{y}^{2}}+250y=4{{x}^{2}}{{y}^{2}} \\\ & \Rightarrow 20{{y}^{3}}+50{{y}^{2}}+20{{x}^{2}}y+100{{y}^{2}}+250y=0 \\\ & \Rightarrow y=0(or)2{{x}^{2}}+2{{y}^{2}}+15y+250=0 \\\ & \\\ \end{aligned}$$ The locus is x-axis (or) $$2{{x}^{2}}+2{{y}^{2}}+15y+250=0$$.