Solveeit Logo

Question

Question: The complex number \(z = x + iy\) which satisfy the equation \(\left| {\dfrac{{z - 5i}}{{z + 5i}}} \...

The complex number z=x+iyz = x + iy which satisfy the equation z5iz+5i=1\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1, lie on
A.{\text{A}}{\text{.}} The x-axis
B.{\text{B}}{\text{.}} The straight line y=5y = 5
C.{\text{C}}{\text{.}} A circle passing through the origin
D.{\text{D}}{\text{.}} None of these.

Explanation

Solution

Hint – In this question use the property of modulus of a complex number which is A+iB=A2+B2\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} to reach the answer.

Given equation is
z5iz+5i=1\left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = 1, where z=x+iyz = x + iy
Now as we know AB=AB\left| {\dfrac{A}{B}} \right| = \dfrac{{\left| A \right|}}{{\left| B \right|}}
z5iz+5i=z5iz+5i=1\Rightarrow \left| {\dfrac{{z - 5i}}{{z + 5i}}} \right| = \dfrac{{\left| {z - 5i} \right|}}{{\left| {z + 5i} \right|}} = 1
z5i=z+5i\Rightarrow \left| {z - 5i} \right| = \left| {z + 5i} \right|
Now substitute z=x+iyz = x + iy

x+iy5i=x+iy+5i x+i(y5)=x+i(y+5)  \Rightarrow \left| {x + iy - 5i} \right| = \left| {x + iy + 5i} \right| \\\ \Rightarrow \left| {x + i\left( {y - 5} \right)} \right| = \left| {x + i\left( {y + 5} \right)} \right| \\\

Now as we know that A+iB=A2+B2\left| {A + iB} \right| = \sqrt {{A^2} + {B^2}} , so use this property we have
x2+(y5)2=x2+(y+5)2\sqrt {{x^2} + {{\left( {y - 5} \right)}^2}} = \sqrt {{x^2} + {{\left( {y + 5} \right)}^2}}
Now squaring on both sides we have
x2+(y5)2=x2+(y+5)2 (y5)2=(y+5)2  {x^2} + {\left( {y - 5} \right)^2} = {x^2} + {\left( {y + 5} \right)^2} \\\ \Rightarrow {\left( {y - 5} \right)^2} = {\left( {y + 5} \right)^2} \\\
Now opening the square we have
y2+2510y=y2+25+10y 20y=0 y=0  {y^2} + 25 - 10y = {y^2} + 25 + 10y \\\ \Rightarrow 20y = 0 \\\ \Rightarrow y = 0 \\\
And we all know y = 0 is nothing but a x-axis
Hence option (a) is correct.

Note – In such types of questions the key concept we have to remember is that always recall all the properties of modulus which is stated above, then according to these properties simplify the given equation we will get the required answer.