Solveeit Logo

Question

Question: The complex number \(z = x + iy\) for which \({\log _{\dfrac{1}{2}}}\left| {z - 2} \right| > {\log _...

The complex number z=x+iyz = x + iy for which log12z2>log12z{\log _{\dfrac{1}{2}}}\left| {z - 2} \right| > {\log _{\dfrac{1}{2}}}\left| z \right| is given by
A.Re(z)1\operatorname{Re} \left( z \right) \leqslant 1
B.Im(z)1\operatorname{Im} \left( z \right) \leqslant 1
C.Re(z)>1\operatorname{Re} \left( z \right) > 1
D.Im(z)>1\operatorname{Im} \left( z \right) > 1

Explanation

Solution

Hint: In this question, we will form equations by using the properties of log and modulus of complex numbers. Then, we will solve the equations to find the required condition.

Complete step-by-step answer:
We are given that z=x+iyz = x + iy is a complex number. We can observe that xx is the real part and yy is an imaginary part of the given complex number.
Also, we are given a condition, log12z2>log12z{\log _{\dfrac{1}{2}}}\left| {z - 2} \right| > {\log _{\dfrac{1}{2}}}\left| z \right|
If logma>logmb{\log _m}\left| a \right| > {\log _m}\left| b \right| and 0<m<10 < m < 1, then a<b\left| a \right| < \left| b \right|
On solving the given condition, we get,
z2<z\left| {z - 2} \right| < \left| z \right|
On substituting the value of z=x+iyz = x + iy in the above equation, we will have,
x+iy2<x+iy\left| {x + iy - 2} \right| < \left| {x + iy} \right|
Combining the real parts together, we get,
(x2)+iy<x+iy\left| {\left( {x - 2} \right) + iy} \right| < \left| {x + iy} \right|
Simplify the expression by calculating the modulus of complex number:
If a+iba + ib is any complex number, then the modulus is given by a2+b2\sqrt {{a^2} + {b^2}}
Therefore, we have,
(x2)2+y2<x2+y2\sqrt {{{\left( {x - 2} \right)}^2} + {y^2}} < \sqrt {{x^2} + {y^2}}
On squaring both sides, we get,
(x2)2+y2<x2+y2{\left( {x - 2} \right)^2} + {y^2} < {x^2} + {y^2}
On simplifying the above expression and solving it further, we have,
(x2)2<x2 x24x+4<x2 \-4x+4<0 4x>4 x>1  {\left( {x - 2} \right)^2} < {x^2} \\\ {x^2} - 4x + 4 < {x^2} \\\ \- 4x + 4 < 0 \\\ 4x > 4 \\\ x > 1 \\\
The xxis the real part of the complex number zz. Thus x>1x > 1is equivalent to Re(z)>1\operatorname{Re} (z) > 1.
Thus option C is the correct answer.

Note: It is known for the inequality logma>logmb{\log _m}\left| a \right| > {\log _m}\left| b \right|, it can be reduced to a<b\left| a \right| < \left| b \right| if and only if 0<m<10 < m < 1,otherwise the inequality is reduced to a>b\left| a \right| > \left| b \right|.