Question
Mathematics Question on Determinants
The complex number z=2 3−i −33+i0−1−i−3−1+i4 is equal to
A
3−4i
B
5+4i
C
−5i
D
None ofthese
Answer
None ofthese
Explanation
Solution
Given that:z=2 3−i −33+i0−1−i−3−1+i4
Expand w.r.t. ′R1′,
=2\left\\{\left(1+i\right)\left(i-1\right)\right\\}-\left(3-i\right)\left\\{4\left(3-i\right)+3\left(i-1\right)\right\\}+3\left\\{\left(1+i\right)\left(3-i\right)\right\\}
=2\left\\{\left(i^{2}-1\right)\right\\}-\left(3+i\right)\left\\{12-4i+3i-3\right\\}+3\left\\{3+3i-i-i^{2}\right\\}
=2(−1−1)−(3+i)(−i+9)+3(2i+4)
=-4-\left\\{-3i+27-i^{2}+9i\right\\}+6i+12
=−4−6i−28+6i+12=−20 (Purely Real)