Solveeit Logo

Question

Question: The complex number satisfying arg (z + i) = \(\frac{\pi}{4}\) and arg (2z + 3 –2i) = \(\frac{3\pi}{4...

The complex number satisfying arg (z + i) = π4\frac{\pi}{4} and arg (2z + 3 –2i) = 3π4\frac{3\pi}{4}simultaneously, is –

A

14\frac{1}{4}34\frac{3}{4}I

B

14\frac{1}{4}+ 34\frac{3}{4}I

C

14\frac{1}{4}34\frac{3}{4}I

D

None

Answer

None

Explanation

Solution

Sol. Let z = x + iy

arg (z + i) = π4\frac{\pi}{4}

Ž y+1x\frac{y + 1}{x} = 1

Ž x = y + 1,

x > 0, y > – 1 ...(1)

arg (2z + 3 – 2i) = 3π4\frac{3\pi}{4}

Ž 2y22x+3\frac{2y - 2}{2x + 3} = – 1 Ž x + y = – 12\frac{1}{2},

x < – 32\frac{3}{2}, y > 1 ... (2)

Hence (1) and (2) have no solution.