Solveeit Logo

Question

Question: The complete solution set of the inequality $\frac{1}{\log_4(\frac{x+1}{x+2})} > \frac{1}{\log_4(x+3...

The complete solution set of the inequality 1log4(x+1x+2)>1log4(x+3)\frac{1}{\log_4(\frac{x+1}{x+2})} > \frac{1}{\log_4(x+3)} is (a20,)(\frac{-a}{20}, \infty), then determine aa

Answer

20

Explanation

Solution

The given inequality is 1log4(x+1x+2)>1log4(x+3)\frac{1}{\log_4(\frac{x+1}{x+2})} > \frac{1}{\log_4(x+3)}.

First, we determine the domain of the inequality.

  1. The arguments of the logarithms must be positive:
    x+1x+2>0\frac{x+1}{x+2} > 0 and x+3>0x+3 > 0.
    x+1x+2>0\frac{x+1}{x+2} > 0 holds for x(,2)(1,)x \in (-\infty, -2) \cup (-1, \infty).
    x+3>0x+3 > 0 holds for x(3,)x \in (-3, \infty).
    The intersection of these two conditions is x(3,2)(1,)x \in (-3, -2) \cup (-1, \infty).

  2. The denominators cannot be zero:
    log4(x+1x+2)0    x+1x+240=1    x+1x+2\log_4(\frac{x+1}{x+2}) \neq 0 \implies \frac{x+1}{x+2} \neq 4^0 = 1 \implies x+1 \neq x+2, which is always true.
    log4(x+3)0    x+340=1    x2\log_4(x+3) \neq 0 \implies x+3 \neq 4^0 = 1 \implies x \neq -2. This is already excluded by the domain condition x+1x+2>0\frac{x+1}{x+2} > 0.

So, the domain of the inequality is x(3,2)(1,)x \in (-3, -2) \cup (-1, \infty).

Let A=log4(x+1x+2)A = \log_4(\frac{x+1}{x+2}) and B=log4(x+3)B = \log_4(x+3). The inequality is 1A>1B\frac{1}{A} > \frac{1}{B}.
This is equivalent to 1A1B>0    BAAB>0\frac{1}{A} - \frac{1}{B} > 0 \implies \frac{B-A}{AB} > 0.

The inequality BAAB>0\frac{B-A}{AB} > 0 holds if (BA>0B-A > 0 and AB>0AB > 0) or (BA<0B-A < 0 and AB<0AB < 0).

Sign of A=log4(x+1x+2)A = \log_4(\frac{x+1}{x+2}):
A>0    x+1x+2>1    1x+2>0    x+2<0    x<2A > 0 \iff \frac{x+1}{x+2} > 1 \iff \frac{-1}{x+2} > 0 \iff x+2 < 0 \iff x < -2.
A<0    0<x+1x+2<1    1x+2<0    x+2>0    x>2A < 0 \iff 0 < \frac{x+1}{x+2} < 1 \iff \frac{-1}{x+2} < 0 \iff x+2 > 0 \iff x > -2.

Sign of B=log4(x+3)B = \log_4(x+3):
B>0    x+3>1    x>2B > 0 \iff x+3 > 1 \iff x > -2.
B<0    0<x+3<1    3<x<2B < 0 \iff 0 < x+3 < 1 \iff -3 < x < -2.

Sign of BA=log4(x+3)log4(x+1x+2)=log4((x+3)(x+2)x+1)B-A = \log_4(x+3) - \log_4(\frac{x+1}{x+2}) = \log_4\left(\frac{(x+3)(x+2)}{x+1}\right).
BA>0    (x+3)(x+2)x+1>1    x2+5x+6(x+1)x+1>0    x2+4x+5x+1>0B-A > 0 \iff \frac{(x+3)(x+2)}{x+1} > 1 \iff \frac{x^2+5x+6 - (x+1)}{x+1} > 0 \iff \frac{x^2+4x+5}{x+1} > 0.
The quadratic x2+4x+5x^2+4x+5 has discriminant 424(1)(5)=4<04^2 - 4(1)(5) = -4 < 0 and leading coefficient 1 > 0, so x2+4x+5>0x^2+4x+5 > 0 for all real xx.
Thus, BA>0    x+1>0    x>1B-A > 0 \iff x+1 > 0 \iff x > -1.
BA<0    x+1<0    x<1B-A < 0 \iff x+1 < 0 \iff x < -1.

Now let's check the conditions for BAAB>0\frac{B-A}{AB} > 0 in the two parts of the domain:

Case 1: x(3,2)x \in (-3, -2).
In this interval:
x<2x < -2, so A>0A > 0.
3<x<2-3 < x < -2, so B<0B < 0.
AB<0AB < 0.
x<1x < -1, so BA<0B-A < 0.
The condition BAAB>0\frac{B-A}{AB} > 0 becomes negativenegative>0\frac{\text{negative}}{\text{negative}} > 0, which is true.
So, the interval (3,2)(-3, -2) is part of the solution set.

Case 2: x(1,)x \in (-1, \infty).
In this interval:
x>1x > -1, so x>2x > -2, which means A<0A < 0.
x>1x > -1, so x>2x > -2, which means B>0B > 0.
AB<0AB < 0.
x>1x > -1, so BA>0B-A > 0.
The condition BAAB>0\frac{B-A}{AB} > 0 becomes positivenegative>0\frac{\text{positive}}{\text{negative}} > 0, which is false.
So, the interval (1,)(-1, \infty) is not part of the solution set.

The complete solution set is (3,2)(-3, -2).

The problem states that the complete solution set is (a20,)(\frac{-a}{20}, \infty). This form suggests that the solution set is a single interval extending to infinity. This contradicts the derived solution set (3,2)(-3, -2).

If the intended inequality was 1log4(x+1x+2)<1log4(x+3)\frac{1}{\log_4(\frac{x+1}{x+2})} < \frac{1}{\log_4(x+3)} instead of >>, the solution set would be (1,)(-1, \infty). In this case, we have 1=a20-1 = \frac{-a}{20}, which implies a=20a = 20.

Therefore, assuming the intended inequality was 1log4(x+1x+2)<1log4(x+3)\frac{1}{\log_4(\frac{x+1}{x+2})} < \frac{1}{\log_4(x+3)}, the solution set is (1,)(-1, \infty). Comparing with (a20,)(\frac{-a}{20}, \infty), we get a20=1\frac{-a}{20} = -1, which gives a=20a = 20.