Solveeit Logo

Question

Mathematics Question on Quadratic Equations

The common roots of the equations z3+2z2+2z+1=0,z2014+z2015+1=0z^{3}+2 z^{2}+2 z+1=0, z^{2014}+z^{2015}+1=0 are

A

ω,ω2\omega, \omega^{2}

B

1,ω,ω21, \omega, \omega^{2}

C

1,ω,ω2-1, \omega, \omega^{2}

D

ω,ω2-\omega,-\omega^{2}

Answer

ω,ω2\omega, \omega^{2}

Explanation

Solution

The given equation
z3+2z2+2z+1=0z^{3}+2 z^{2}+2 z+1=0 can be rewritten as
(z+1)(z2+z+1)=0(z+1)\left(z^{2}+z+1\right)=0
Since, its roots are 1,ω-1, \omega and ω2\omega^{2}.
Let f(z)=z2014+z2015+1=0f(z)=z^{2014}+z^{2015}+1=0
Put z=1,ωz=-1, \omega and ω2\omega^{2} respectively, we get
f(1)=(1)2014+(1)2015+1=0f(-1) =(-1)^{2014}+(-1)^{2015}+1=0
=10=1 \neq 0
Therefore, 1-1 is not a root of the equation f(z)=0f(z)=0.
Again,f(ω)=(ω)2014+(ω)2015+1=0f(\omega) =(\omega)^{2014}+(\omega)^{2015}+1=0
=(ω3)671ω+(ω3)671ω2+1=0=\left(\omega^{3}\right)^{671} \cdot \omega+\left(\omega^{3}\right)^{671} \cdot \omega^{2}+1=0
ω+ω2+1=0\Rightarrow \omega+\omega^{2}+1=0
ω2+ω+1=0\Rightarrow \omega^{2}+\omega+1=0
0=0\Rightarrow 0=0
Therefore, ω\omega is a root of the equation f(z)=0f(z)=0
Similarly, f(ω3)=(ω2)2014+(ω3)2015+1=0f\left(\omega^{3}\right)=\left(\omega^{2}\right)^{2014}+\left(\omega^{3}\right)^{2015}+1=0
(ω3)1342m2+(ω3)1343m+1=0\Rightarrow \left(\omega^{3}\right)^{1342} \cdot m^{2}+\left(\omega^{3}\right)^{1343} \cdot m+1=0
ω2+ω+1=0\Rightarrow \omega^{2}+\omega+1=0
0=0\Rightarrow 0=0
Hence, ω\omega and ω2\omega^{2} are the common roots.