Solveeit Logo

Question

Mathematics Question on Hyperbola

The combined equation of the asymptotes of the hyperbola 2x2+5xy+2y2+4x+5y=02x^2 + 5xy + 2y^2 + 4x + 5y = 0 is -

A

2x2+5xy+2y2+4x+5y+2=02x^2 + 5 xy + 2y^2 + 4x + 5y + 2 = 0

B

2x2+5xy+2y2+4x+5y2=02x^2 + 5 xy + 2y^2 + 4x + 5y - 2 = 0

C

2x2+5xy+2y2=02x^2 + 5 xy + 2y^2 = 0

D

None of these

Answer

2x2+5xy+2y2+4x+5y+2=02x^2 + 5 xy + 2y^2 + 4x + 5y + 2 = 0

Explanation

Solution

The correct option is(A): 2x2+5xy+2y2+4x+5y+2=02x^{2} + 5 xy + 2y^{2} + 4x + 5y + 2 = 0.

Let the equation of asymptotes be
2x2+5xy+2y2+4x+5y+λ=0.......(1)2x^{2} + 5xy + 2y^{2} + 4x + 5y + \lambda = 0.......\left(1\right)
This equation represents a pair of straight lines,
abc+2fghaf2bg2ch2=0\therefore\quad abc + 2fgh - af^{2} - bg^{2} - ch^{2} = 0
4λ+252528λ×254=0\therefore 4\lambda +25-\frac{25}{2} - 8-\lambda\times \frac{25}{4} = 0
9λ4+92=0λ=2\Rightarrow -\frac{9\lambda}{4} +\frac{9}{2} = 0 \Rightarrow \lambda = 2
Putting the value of λ\lambda in e (1)\left(1\right), we get
2x2+5xy+2y2+4x+5y+2=02x^{2} + 5 xy + 2y^{2} + 4x + 5y + 2 = 0
this is the equation of the asymptotes.