Solveeit Logo

Question

Question: The COM of a uniform disc has velocity 4i on a horizontal plane The angular velocity of this disc is...

The COM of a uniform disc has velocity 4i on a horizontal plane The angular velocity of this disc is 5\sqrt{5} (-k). The radius of curvature of the leftmost point of the disc at this instant is. Radius of disc is 8/5\sqrt{5}

Answer

5

Explanation

Solution

Let the velocity of the center of mass (COM) of the disc be vC=4i^\vec{v}_C = 4\hat{i}.

The angular velocity of the disc is ω=5(k^)=5k^\vec{\omega} = \sqrt{5}(-\hat{k}) = -\sqrt{5}\hat{k}.

The radius of the disc is R=85R = \frac{8}{\sqrt{5}}.

Let the origin be at the COM. The leftmost point P of the disc is located at rCP=Ri^=85i^\vec{r}_{CP} = -R\hat{i} = -\frac{8}{\sqrt{5}}\hat{i} relative to the COM.

The velocity of point P is given by vP=vC+ω×rCP\vec{v}_P = \vec{v}_C + \vec{\omega} \times \vec{r}_{CP}.

vP=4i^+(5k^)×(85i^)\vec{v}_P = 4\hat{i} + (-\sqrt{5}\hat{k}) \times (-\frac{8}{\sqrt{5}}\hat{i})

vP=4i^+(5×85)(k^×i^)\vec{v}_P = 4\hat{i} + (\sqrt{5} \times \frac{8}{\sqrt{5}})(\hat{k} \times \hat{i})

vP=4i^+8j^\vec{v}_P = 4\hat{i} + 8\hat{j}.

The speed of point P is vP=vP=42+82=16+64=80=45v_P = |\vec{v}_P| = \sqrt{4^2 + 8^2} = \sqrt{16 + 64} = \sqrt{80} = 4\sqrt{5}.

To find the radius of curvature ρ\rho, we need the acceleration of point P. The radius of curvature is given by ρ=vP2an\rho = \frac{v_P^2}{a_n}, where ana_n is the component of acceleration perpendicular to the velocity.

The acceleration of point P is given by aP=aC+α×rCP+ω×(ω×rCP)\vec{a}_P = \vec{a}_C + \vec{\alpha} \times \vec{r}_{CP} + \vec{\omega} \times (\vec{\omega} \times \vec{r}_{CP}).

Assuming the velocity of the COM and the angular velocity are constant at this instant, we have aC=0\vec{a}_C = \vec{0} and α=0\vec{\alpha} = \vec{0}.

So, aP=ω×(ω×rCP)\vec{a}_P = \vec{\omega} \times (\vec{\omega} \times \vec{r}_{CP}).

This term is the centripetal acceleration of P relative to C, given by aP/Ccentripetal=ω2rCP\vec{a}_{P/C}^{centripetal} = -\omega^2 \vec{r}_{CP}^{\perp}, where rCP\vec{r}_{CP}^{\perp} is the component of rCP\vec{r}_{CP} perpendicular to ω\vec{\omega}. Since ω=5k^\vec{\omega} = -\sqrt{5}\hat{k} is along the z-axis and rCP=85i^\vec{r}_{CP} = -\frac{8}{\sqrt{5}}\hat{i} is in the xy-plane, rCP\vec{r}_{CP} is perpendicular to ω\vec{\omega}.

aP=ω2rCP=(5)2(85i^)=5(85i^)=5×85i^=405i^=85i^\vec{a}_P = -|\vec{\omega}|^2 \vec{r}_{CP} = -(\sqrt{5})^2 (-\frac{8}{\sqrt{5}}\hat{i}) = -5 (-\frac{8}{\sqrt{5}}\hat{i}) = 5 \times \frac{8}{\sqrt{5}}\hat{i} = \frac{40}{\sqrt{5}}\hat{i} = 8\sqrt{5}\hat{i}.

So, the acceleration of point P is aP=85i^\vec{a}_P = 8\sqrt{5}\hat{i}.

The radius of curvature is ρ=vP2an\rho = \frac{v_P^2}{a_n}. We need to find the normal component of acceleration ana_n.

The normal acceleration ana_n is the component of aP\vec{a}_P perpendicular to vP\vec{v}_P. The tangential acceleration ata_t is the component of aP\vec{a}_P parallel to vP\vec{v}_P.

at=aPvPvPa_t = \frac{\vec{a}_P \cdot \vec{v}_P}{|\vec{v}_P|}.

aPvP=(85i^)(4i^+8j^)=(85×4)+(85×8)×(i^j^)=325+0=325\vec{a}_P \cdot \vec{v}_P = (8\sqrt{5}\hat{i}) \cdot (4\hat{i} + 8\hat{j}) = (8\sqrt{5} \times 4) + (8\sqrt{5} \times 8) \times (\hat{i} \cdot \hat{j}) = 32\sqrt{5} + 0 = 32\sqrt{5}.

vP=45v_P = 4\sqrt{5}.

at=32545=8a_t = \frac{32\sqrt{5}}{4\sqrt{5}} = 8.

The magnitude of the total acceleration is aP=aP=85i^=85a_P = |\vec{a}_P| = |8\sqrt{5}\hat{i}| = 8\sqrt{5}.

The normal acceleration ana_n is related to the total acceleration aPa_P and tangential acceleration ata_t by aP2=at2+an2a_P^2 = a_t^2 + a_n^2.

(85)2=82+an2(8\sqrt{5})^2 = 8^2 + a_n^2

64×5=64+an264 \times 5 = 64 + a_n^2

320=64+an2320 = 64 + a_n^2

an2=32064=256a_n^2 = 320 - 64 = 256

an=256=16a_n = \sqrt{256} = 16.

Now we can calculate the radius of curvature:

ρ=vP2an=(45)216=8016=5\rho = \frac{v_P^2}{a_n} = \frac{(4\sqrt{5})^2}{16} = \frac{80}{16} = 5.

The radius of curvature of the leftmost point of the disc at this instant is 5.