Solveeit Logo

Question

Question: The coefficients of \({{x}^{n}}\) in the expansion of \(\dfrac{a-bx}{{{e}^{x}}}\) is A. \({{\left(...

The coefficients of xn{{x}^{n}} in the expansion of abxex\dfrac{a-bx}{{{e}^{x}}} is
A. (1)na+bnn!{{\left( -1 \right)}^{n}}\dfrac{a+bn}{n!}
B. (1)nabnn!{{\left( -1 \right)}^{n}}\dfrac{a-bn}{n!}
C. (1)nb+ann!{{\left( -1 \right)}^{n}}\dfrac{b+an}{n!}
D. None of these

Explanation

Solution

We first convert the expression in form of ex(abx){{e}^{-x}}\left( a-bx \right) and use the expansion of the exponential form ex{{e}^{-x}}. We try to find the multiplication for which we get the power value of nn. Then we use the multiplication of coefficients to find the solution.

Complete step by step answer:
The expression abxex\dfrac{a-bx}{{{e}^{x}}} can be written as ex(abx){{e}^{-x}}\left( a-bx \right).
Now we expand the exponential form ex{{e}^{-x}}.So,
ex=1x+x22!.......+(1)rxrr!+......{{e}^{-x}}=1-x+\dfrac{{{x}^{2}}}{2!}-.......+{{\left( -1 \right)}^{r}}\dfrac{{{x}^{r}}}{r!}+......\infty
Therefore, ex(abx)=(abx)(1x+x22!.......+(1)rxrr!+......){{e}^{-x}}\left( a-bx \right)=\left( a-bx \right)\left( 1-x+\dfrac{{{x}^{2}}}{2!}-.......+{{\left( -1 \right)}^{r}}\dfrac{{{x}^{r}}}{r!}+......\infty \right).
We have to find the coefficients of xn{{x}^{n}} in the expansion of the multiplication.The power of nn can be achieved from two multiplications.We multiply aa with the term of power nn in the expansion of ex{{e}^{-x}} and multiply bx-bx with the term of power n1n-1 in the expansion of ex{{e}^{-x}}.

Therefore, those particular multiplication will be,
a((1)nxnn!)a\left( {{\left( -1 \right)}^{n}}\dfrac{{{x}^{n}}}{n!} \right) and (bx)((1)n1xn1(n1)!)\left( -bx \right)\left( {{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n-1}}}{\left( n-1 \right)!} \right)
The addition will give
\begin{aligned} & a\left( {{\left( -1 \right)}^{n}}\dfrac{{{x}^{n}}}{n!} \right)+\left( -bx \right)\left( {{\left( -1 \right)}^{n-1}}\dfrac{{{x}^{n-1}}}{\left( n-1 \right)!} \right) \\\ & \Rightarrow {{\left( -1 \right)}^{n}}\dfrac{{{x}^{n}}}{n!}\left\\{ a+bn \right\\} \\\ & \Rightarrow {{\left( -1 \right)}^{n}}\dfrac{a+bn}{n!}{{x}^{n}} \\\ \end{aligned}
Therefore, the coefficient of xn{{x}^{n}} is (1)na+bnn!{{\left( -1 \right)}^{n}}\dfrac{a+bn}{n!}.

Hence, the correct option is A.

Note: We need to be careful about the signs of the terms of power nn in the expansion of ex{{e}^{-x}}. The value of nn is not specified and therefore the (1)n{{\left( -1 \right)}^{n}} has to be in the final solution. We cannot form the coefficients from the division.