Solveeit Logo

Question

Question: The coefficients of \[{x^7}\] in the expansion of \[(1 - {x^4}){(1 + x)^9}\] is equal to A.27 B...

The coefficients of x7{x^7} in the expansion of (1x4)(1+x)9(1 - {x^4}){(1 + x)^9} is equal to
A.27
B.-24
C.48
D.-48

Explanation

Solution

Hint : We solve this using binomial expansion. We know in binomial expansion of (a+b)n{(a + b)^n} , the (r+1)th{(r + 1)^{th}} term denoted by tr+1{t_{r + 1}} and its given by tr+1=nCr.anr.br{t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r} . We convert the above expansion term in the form (a+b)n{(a + b)^n} , then we apply the tr+1{t_{r + 1}} formula to find the required coefficient. We know nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} .

Complete step-by-step answer :
We know the binomial expansion (a+b)n=r=0nnCrxnryr{(a + b)^n} = \sum\limits_{r = 0}^n {^n{C_r}{x^{n - r}}{y^r}} , where nCr=n!r!(nr)!^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}} .
We have, (1x4)(1+x)9(1 - {x^4}){(1 + x)^9}
Expanding we have,
1×(1+x)9x4(1+x)9 - - - - - - (1)\Rightarrow 1 \times {(1 + x)^9} - {x^4}{(1 + x)^9}{\text{ - - - - - - (1)}}
We find the coefficient x7{x^7} in 1×(1+x)91 \times {(1 + x)^9} and x4(1+x)9 - {x^4}{(1 + x)^9} , then we add the both.
Now in (1+x)9{(1 + x)^9} we will have x7{x^7} when we expand,
We know in binomial expansion of (a+b)n{(a + b)^n} , the (r+1)th{(r + 1)^{th}} term denoted by tr+1{t_{r + 1}} and its given by tr+1=nCr.anr.br \Rightarrow {t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r}
(1+x)9{(1 + x)^9} we have n=9n = 9 , a=1a = 1 and b=xb = x
tr+1=9Cr.(1)9r.(x)r\Rightarrow {t_{r + 1}}{ = ^9}{C_r}.{(1)^{9 - r}}.{(x)^r}
We will have the coefficient of x7{x^7} when r=7r = 7 .
t7+1=9C7.(1)97.(x)7\Rightarrow {t_{7 + 1}}{ = ^9}{C_7}.{(1)^{9 - 7}}.{(x)^7}
t8=9C7.x7\Rightarrow {t_8}{ = ^9}{C_7}.{x^7}
The coefficient is 9C7=9!7!(97)!^9{C_7} = \dfrac{{9!}}{{7!(9 - 7)!}} (From the formula)
=9!7!(2)!= \dfrac{{9!}}{{7!(2)!}}
=9×8×7!7!(2)!= \dfrac{{9 \times 8 \times 7!}}{{7!(2)!}}
Cancelling 7!7! we have,
=9×82= \dfrac{{9 \times 8}}{2}
=9×4= 9 \times 4
=36 - - - - - - (2)= 36{\text{ - - - - - - (2)}}
Now taking x4×(1+x)9{x^4} \times {(1 + x)^9} . Following the same procedure as above.
Now in x4×(1+x)9{x^4} \times {(1 + x)^9} we will have x7{x^7} when we expand,
We know in binomial expansion of (a+b)n{(a + b)^n} , the (r+1)th{(r + 1)^{th}} term denoted by tr+1{t_{r + 1}} and its given by tr+1=nCr.anr.br \Rightarrow {t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r}
(1+x)9{(1 + x)^9} we have n=9n = 9 , a=1a = 1 and b=xb = x
tr+1=9Cr.(1)9r.(x)r\Rightarrow {t_{r + 1}}{ = ^9}{C_r}.{(1)^{9 - r}}.{(x)^r} .
But we have x4{x^4} multiplied to it.
x4×tr+1=x4×9Cr.(1)9r.(x)r\Rightarrow {x^4} \times {t_{r + 1}} = {x^4}{ \times ^9}{C_r}.{(1)^{9 - r}}.{(x)^r}
x4.tr+1=9Cr.19r.xr+4\Rightarrow {x^4}.{t_{r + 1}}{ = ^9}{C_r}{.1^{9 - r}}.{x^{r + 4}}
We will have the coefficient of x7{x^7} when r=3r = 3 .
t3+1=9C3.(1)93.(x)7\Rightarrow {t_{3 + 1}}{ = ^9}{C_3}.{(1)^{9 - 3}}.{(x)^7}
t4=9C3.x7\Rightarrow {t_4}{ = ^9}{C_3}.{x^7}
The coefficient is 9C3=9!3!(93)!^9{C_3} = \dfrac{{9!}}{{3!(9 - 3)!}} (From the formula)
=9!3!.6!= \dfrac{{9!}}{{3!.6!}}
=9×8×7×6!3!.6!= \dfrac{{9 \times 8 \times 7 \times 6!}}{{3!.6!}}
Cancelling 6!6! we get,
=9×8×73×2= \dfrac{{9 \times 8 \times 7}}{{3 \times 2}}
=3×4×7= 3 \times 4 \times 7
=84 - - - - - (3)= 84{\text{ - - - - - (3)}}
Thus we found the coefficient in each term. Now substituting in the equation 1 we have
Coefficient of x7{x^7} in the expansion of (1x4)(1+x)9(1 - {x^4}){(1 + x)^9} =3684 = 36 - 84
=48= - 48
So, the correct answer is “Option D”.

Note : In the expansion (a+b)n{(a + b)^n} to find any coefficient of any term we have a formula that tr+1=nCr.anr.br{t_{r + 1}}{ = ^n}{C_r}.{a^{n - r}}.{b^r} . In the above problem we can also find a particular term position in the expansion. That is in the first term we have t8=36.x7{t_8} = 36.{x^7} , we can see that it is the eighth term in that expansion. Similarly for the second term the position of x7{x^7} is fourth. Follow the same procedure for this kind of problem.