Solveeit Logo

Question

Question: The coefficient of x<sup>n</sup>y<sup>n</sup> in the expansion of {(1 + x) (1 + y) (x + y)}<sup>n</s...

The coefficient of xnyn in the expansion of {(1 + x) (1 + y) (x + y)}n is –

A

r=0nCr2\sum_{r = 0}^{n}C_{r}^{2}

B

r=0nCr3\sum_{r = 0}^{n}C_{r}^{3}

C

r+s=0nnCrnCs2\sum_{r + s = 0}^{n}{nC_{r}^{n}C_{s}^{2}}

D

None

Answer

r=0nCr3\sum_{r = 0}^{n}C_{r}^{3}

Explanation

Solution

We have,

{(1 + x) (1 + y) (x + y)}n

= (C0 + C1x + C2x2 + .... + Cnxn) ×

(C0yn + C1yn–1 + ... + Cn–1 y + Cn) ×

(C0xn + C1 xn–1y + ….. + Cn–1 x yn–1 + Cn yn)

Clearly, (Coefficient of xn yn on RHS)

= C03+C13+C23+....+Cn3=r=0nCr3C_{0}^{3} + C_{1}^{3} + C_{2}^{3} + .... + C_{n}^{3} = \sum_{r = 0}^{n}C_{r}^{3}

Hence (2) is correct answer.